

Clouds: An Opportunity for Scientific Applications?

Ewa Deelman
USC Information Sciences Institute

Acknowledgements

- Yang-Suk Ki (former PostDoc, USC)
- Gurmeet Singh (former Ph.D. student, USC)
- Gideon Juve (Ph.D. student, USC)
- Tina Hoffa (Undergrad, Indiana University)
- Miron Livny (University of Wisconsin, Madison)
- Montage scientists: Bruce Berriman, John Good, and others
- Pegasus team: Gaurang Mehta, Karan Vahi, others

Outline

- Background
 - Science Applications
 - Workflow Systems
- The opportunity of the Cloud
 - Virtualization
 - On-demand availability
- Simulation study of an astronomy application on the Cloud
- Conclusions

Scientific Applications

- Complex
 - Involve many computational steps
 - Require many (possibly diverse resources)
 - Often require a custom execution environment
- Composed of individual application components
 - Components written by different individuals
 - Components require and generate large amounts of data
 - Components written in different languages

Issues Critical to Scientists

- Reproducibility of scientific analyses and processes is at the core of the scientific method
- Scientists consider the "capture and generation of provenance information as a critical part of the <...> generated data"
- "Sharing <methods> is an essential element of education, and acceleration of knowledge dissemination."

NSF Workshop on the Challenges of Scientific Workflows, 2006, www.isi.edu/nsf-workflows06 Y. Gil, E. Deelman et al, Examining the Challenges of Scientific Workflows. IEEE Computer, 12/2007

Computational challenges faced by applications

- Be able to compose complex applications from smaller components
- Execute the computations reliably and efficiently
- Take advantage of any number/types of resources
- Cost is an issue
 - Cluster, Shared CyberInfrastructure (EGEE, Open Science Grid, TeraGrid), Cloud

Possible solution

- Structure an application as a workflow
 - Describe data and components in logical terms
 - Can be mapped onto a number of execution environments
 - Can be optimized and if faults occur the workflow management system can recover
- Use a workflow management system (Pegasus-WMS) to manage the application on a number of resources

Pegasus-Workflow Management System

- Leverages abstraction for workflow description to obtain ease of use, scalability, and portability
- Provides a compiler to map from high-level descriptions to executable workflows
 - Correct mapping
 - Performance enhanced mapping
- Provides a runtime engine to carry out the instructions (Condor DAGMan)
 - Scalable manner
 - Reliable manner
- Can execute on a number of resources: local machine, campus cluster, Grid, Cloud

Mapping Correctly

- Select where to run the computations
 - Apply a scheduling algorithm for computation tasks
 - Transform task nodes into nodes with executable descriptions
 - Execution location
 - Environment variables initializes
 - Appropriate command-line parameters set
- Select which data to access
 - Add stage-in nodes to move data to computations
 - Add stage-out nodes to transfer data out of remote sites to storage
 - Add data transfer nodes between computation nodes that execute on different resources

Additional Mapping Elements

- Add data cleanup nodes to remove data from remote sites when no longer needed
 - reduces workflow data footprint
- Cluster compute nodes in small computational granularity applications
- Add nodes that register the newly-created data products
- Provide provenance capture steps
 - Information about source of data, executables invoked, environment variables, parameters, machines used, performance
- Scale matters--today we can handle:
 - 1 million tasks in the workflow instance (SCEC)
 - 10TB input data (LIGO)

Point on the sky, area

Image Courtesy of IPAC, Caltech

Generating mosaics of the sky (Bruce Berriman, Caltech)

Size of the mosaic is degrees square*	Number of jobs	Number of input data files	Number of Intermediate files	Total data footprint	Approx. execution time (20 procs)
1	232	53	588	1.2GB	40 mins
2	1,444	212	3,906	5.5GB	49 mins
4	4,856	747	13,061	20GB	1hr 46 mins
6	8,586	1,444	22,850	38GB	2 hrs. 14 mins
10	20,652	3,722	54,434	97GB	6 hours

^{*}The full moon is 0.5 deg. sq. when viewed form Earth, Full Sky is ~ 400,000 deg. sq.

Types of Workflow Applications

- Pegasus
- Providing a service to a community (Montage project)
 - Data and derived data products available to a broad range of user's
 - A limited number of small computational requests can be handled locally
 - For large numbers of requests or large requests need to rely on shared cyberinfrastructure resources
 - On-the fly workflow generation, portable workflow definition
- Supporting community-based analysis (SCEC project)
 - Codes are collaboratively developed
 - Codes are "strung" together to model complex systems
 - Ability to correctly connect components, scalability
- Processing large amounts of shared data on shared resources (LIGO project)
 - Data captured by various instruments and cataloged in community data registries.
 - Amounts of data necessitate reaching out beyond local clusters
 - Automation, scalability and reliability
- Automating the work of one scientist (Epigenomic project, USC)
 - Data collected in a lab needs to be analyzed in several steps
 - Automation, efficiency, and flexibility (scripts age and are difficult to change)
 - Need to have a record of how data was produced

Outline

- Background
 - Science Applications
 - Workflow Systems
- The opportunity of the Cloud
 - Virtualization
 - Availability
- Simulation study of an astronomy application on the Cloud
- Conclusions

Clouds

- Originated in the business domain
- Outsourcing services to the Cloud
- Pay for what you use
- Provided by data centers that are built on compute and storage virtualization technologies.

Scientific applications often have different

requirements

- MPI
- Shared file system
- Support for many dependent jobs

Container-based Data Center

Available Cloud Platforms

- Commercial Providers
 - Amazon EC2, Google, others

- Science Clouds
 - Nimbus (U. Chicago), Stratus (U. Florida)
 - Experimental
- Roll out your own using open source cloud management software
 - Virtual Workspaces (Argonne), Eucalyptus (UCSB), OpenNebula (C.U. Madrid)
- Many more to come

Cloud Benefits for Grid Applications

- Similar to the Grid
 - Provides access to shared cyberinfrastructure
 - Can recreate familiar grid and cluster architectures (with additional tools)
 - Can use existing grid software and tools
- Resource Provisioning
 - Resources can be leased for entire application instead of individual jobs
 - Enables more efficient execution of workflows
- Customized Execution Environments
 - User specifies all software components including OS
 - Administration performed by user instead of resource provider (good [user control] and bad [extra work])

Amazon EC2 Virtualization

- Virtual Nodes
 - You can request a certain class of machine
 - Previous research suggests 10% performance hit
 - Multiple virtual hosts on a single physical host
 - You have to communicate over a wide-area network
- Virtual Clusters (additional software needed)
 - Create cluster out of virtual resources
 - Use any resource manager (PBS, SGE, Condor)
 - Dynamic configuration is the key issue

Personal Cluster

Work by Yang-Suk Kee at USC

EC2 Software Environment

pegasus

- Specified using disk images
 - OS snapshot that can be started on virtualized hosts
 - Provides portable execution environment for applications
 - Helps with reproducibility for scientific applications
- Images for a workflow application can contain:
 - Application Codes
 - Workflow Tools
 - Pegasus, DAGMan
 - Grid Tools
 - Globus Gatekeeper, GridFTP
 - Resource Manager
 - Condor, PBS, SGE, etc.

EC2 Storage Options

- Local Storage
 - Each EC2 node has 100-300 GB of local storage
 - Used for image too
- Amazon S3
 - Simple put/get/delete operations
 - Currently no interface to grid/workflow software
- Amazon EBS
 - Network accessible block-based storage volumes (c.f. SAN)
 - Cannot be mounted on multiple workers
- NFS
 - Dedicated node exports local storage, other nodes mount
- Parallel File Systems (Lustre, PVFS, HDFS)
 - Combine local storage into a single, parallel file system
 - Dynamic configuration may be difficult

Montage/IPAC Situation

- Provides a service to the community
 - Delivers data to the community
 - Delivers a service to the community (mosaics)
- Have their own computing infrastructure
 - Invests ~ \$75K for computing (over 3 years)
 - Appropriates ~ \$50K in human resources every year
- Expects to need additional resources to deliver services
- Wants fast responses to user requests

Cloudy Questions

- Applications are asking:
 - What are Clouds?
 - How do I run on them?
- How do I make good use of the cloud so that I use my funds wisely?
 - And how do I explain Cloud computing to the purchasing people?
- How many resources do I allocate for my computation or my service?
- How do I manage data transfer in my cloud applications?
- How do I manage data storage—where do I store the input and output data?

Outline

- Background
 - Science Applications
 - Workflow Systems
- The opportunity of the Cloud
 - Virtualization
 - Availability
- Simulation study of an astronomy application on the Cloud
- Conclusions

Montage Infrastructure

Montage Infrastructure

Computational Model

- Based on Amazon's fee structure
 - \$0.15 per GB-Month for storage resources
 - \$0.1 per GB for transferring data into its storage system
 - \$0.16 per GB for transferring data out of its storage system
 - \$0.1 per CPU-hour for the use of its compute resources
- Normalized to cost per second
- Does not include the cost of building and deploying an image
- Simulations done using a modified Gridsim

How many resources to provision?

Montage 1 Degree Workflow

203 Tasks

60 cents for the 1 processor computation versus almost \$4 with 128 processors, 5.5 hours versus 18 minutes

4 Degree Montage

3,027 application tasks

1 processor \$9, 85 hours; 128 processors, 1 hour with and \$14.

Data Management Modes

pegasus

Remote I/O

Rb Rb Rc 2

Good for non-shared file systems

Regular

How to manage data?

1 Degree Montage †

Data Transfer (GB) Costs (\$)

Ewa Deelman, deelman@isi.edu

www.isi.edu/~deelman

pegasus.isi.edu

How do data cost affect total cost?

- Data stored outside the cloud
- Computations run at full parallelism
- Paying only for what you use
 - Assume you have enough requests to make use of all provisioned resources

Cost in \$

Where to keep the data?

- Storing all of 2 Mass data
 - 12 TB of data → \$1,800 per month on the Cloud
- Calculating a 1 degree mosaic and delivering it to the user \$2.22 (with data outside the cloud)
- Same mosaic but data inside the cloud: \$2.12
- To overcome the storage costs, users would need to request at least \$1,800/(\$2.22-\$2.12) = 18,000 mosaics per month
- Does not include the initial cost of transferring the data to the cloud, which would be an additional \$1,200
- Is \$1,800 per month reasonable?
 - ~\$65K over 3 years (does not include data access costs from outside the cloud)
 - Cost of 12TB to be hosted at Caltech \$15K over 3 years for hardware

The cost of doing science

- Computing a mosaic of the entire sky (3,900
 - 4-degree-square mosaics)
 - $3,900 \times \$8.88 = \$34,632$
- How long it makes sense to store a mosaic?
 - Storage vs computation costs

	Cost of generation	Mosaic size	Length of time to save
1 degree^2	\$0.56	173MB	21.52 months
2 degree^2	\$2.03	558MB	24.25 months
4 degree^2	\$8.40	2.3GB	25.12 months

Summary

- We started asking the question of how can a scientific workflow best make use of clouds
- Assumed a simple cost model based on the Amazon fee structure
- Conducted simulations
 - Need to find balance between cost and performance
 - Computational cost outweighs storage costs
- Storing data on the Cloud is expensive
- Did not explore issues of data security and privacy, reliability, availability, ease of use, etc

Will scientific applications move into clouds?

- pegasus
- There is interest in the technology from applications
- They often don't understand what are the implications
- Need tools to manage the cloud
 - Build and deploy images
 - Request the right number of resources
 - Manage costs for individual computations
 - Manage project costs
- Projects need to perform cost/benefit analysis

Issues Critical to Scientists

- Reproducibility yes—maybe--through virtual images, if we package the entire environment, the application and the VMs behave
- Provenance still need tools to capture what happened
- Sharing can be easier to share entire images and data
 - Data could be part of the image

Relevant Links

- Amazon Cloud: http://aws.amazon.com/ec2/
- Pegasus-WMS: <u>pegasus.isi.edu</u>
- DAGMan: www.cs.wisc.edu/condor/dagman

- Gil, Y., E. Deelman, et al. Examining the Challenges of Scientific Workflows. IEEE Computer, 2007.
- Workflows for e-Science, Taylor, I.J.; Deelman, E.; Gannon, D.B.; Shields, M. (Eds.), Dec. 2006
- LIGO: www.ligo.caltech.edu/
- SCEC: <u>www.scec.org</u>
- Montage: montage.ipac.caltech.edu/
- Condor: <u>www.cs.wisc.edu/condor/</u>

