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Workflows in the Cloud

= Advantages
— Provisioning (compute and storage)
— Elasticity
— Reproducibility
— Appliances (e.g. Galaxy)
— Control over environment (esp. for legacy)

= Disadvantages
— Administration
— Virtualization overhead
— Resource limitations (not really infinite, no queuing)
— Cost relative to alternatives (campus clusters, grid)
— Cost/Performance tradeoffs
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Deploying Workflows in the Cloud

= Could develop Workflow as a Service (PaaS or SaaS)

= Can deploy existing software on laaS clouds

= “Virtual Clusters”

= New tools: Nimbus Broker, cloudinit.d, Wrangler, Precip
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Motivations for this Work

Data-intensive workflows are limited by I/O performance
— /0 is becoming the bottleneck rather than throughput
Many workflows share data using files
— Task A writes a file, task B reads it
— File management is critical
Write-once
— Typically, files are only written once, never updated
— Can replicate files without worrying about consistency
Three ways to share files
1. Use a shared storage system (POSIX or non-POSIX)
2. Transfer files from submit host to workers and back
3. Transfer files directly from one worker to the next
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Previous Study on Data Sharing Options

= Goal
— Better understand how storage systems affect performance
— Compare storage costs on commercial clouds
= Deployed several different storage systems
— Local, NFS, S3, PVFS2, GlusterFS (distribute and NUFA)
= Used three different workflow applications with different
resource requirements
— Montage (astronomy, data-intensive)
— Broadband (seismology, memory-intensive)
— Epigenome (bioinformatics, CPU-intensive)
= Compared performance and cost of different file system
options

G. Juve, et al., “Data Sharing Options for Scientific Workflows on Amazon EC2”,
Supercomputing, 2010.
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Results for Montage
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= PVFS didn’t handle smalli = NFS and S3 have extra

files well

= S3 had too much overhead
= NFS did comparatively well
= GlusterFS came out on top
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Approach

= Develop storage service to facilitate peer-to-peer transfers
— Applies to environments other than clouds

= New files are written to the local disk
— No network I/0 for writes
= Files are replicated on-demand

— Each time a task runs on a worker, all of its input files are
replicated to that worker

= Files cached on each worker node
— Enabled by write-once, no consistency issues

= Workflow tasks are wrapped by I/O operations
1. Fetch input files
2. Run task
3. Register output files
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System Design

p
. Replica Index
= Replica Index Server Server
— Stores mappings of logical file e | U URLS
names to URLs \Breland

= Cache Daemon
— Manages local storage on each

Server
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— Serves local replicas to peers [ oache } »[ ache j
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. . Storage Storage
= Command-line Client X 7
— Get files from remote storage [Command-line] [Command-line]
Client Client
— Put files into local storage
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Replica Index Server Throughput Benchmark
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Number of Clients

= Set up RIS on m1.xlarge, issued 1000 add operations
each from 1-16 clients on m1.medium instances

= RIS achieved a peak throughput of ~650 ops/sec
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Benchmarked vs. Observed RIS Throughput

Average requests per second observed for a 10-degree Montage

workflow
Nodes / Cores | Entries in RIS | _ ' orkflow Average put
runtime (sec) requests/second
2/8 63558 6699 9.5
4/16 76688 4705 16.3
8/32 N/A 3690 N/A
16 /64 87073 3704 23 5

= Ran 10 degree workflow using 8-64 cores (m1.xlarge)

= Observed RIS throughput (10-25 ops/sec) is much less
than benchmarked throughput (650 ops/sec)

= RIS should not be the bottleneck for workflows and
resource pools of this size
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Cache Daemon Benchmarks

Implementation | OMB | 1MB | 10MB | 100 MB
Put Latency (sec)  oPY ‘ 0.007 0.009 0.35 4.36
symlink 0.008 0.007 0.008 0.008
Implementation 0 MB 1 MB 10 MB 100 MB
copy 0.016 0.031 0.178 3.951
Get Latency (sec) symlink 0.017 0.033 0.146 1.841
symlink+fsync 0.017 0.073 0.373 3.182
Implementation 1 MB 10 MB 100 MB
copy 31.784 56.048 25.31
Get Bandwidth (MB/sec)  symlink 30.571| 68734  54.329
symlink+fsync 13.776 26.824 31.423

= Disk performance: ~38 MB/s write, ~109 MB/s read

= Network performance: ~89 MB/s

= Bottom line: Latency limits performance for smaller files
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Workflow Performance Comparison
Reprojection ) NS
= Application: Montage *

— Creates science-grade Background — i
astronomical image mosaics Rectification /N

= Test workflow i NS
— 10 degree square area »
Co-addition = l i
— 19,320 tasks S
— 13 GB input, 88 GB output B |

Reformatting

Image: John Good, Caltech
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Storage Systems

NFS
— Centralized file system

— Used a dedicated
m1.xlarge instance

GlusterFS
— Distributed file system
— Used “distribute” mode

— Each worker participates
in the file system

P2P
— Our approach

— RIS co-located with
submit host
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Experiment Setup
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Performance Comparison
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= NFS performance is flat, as expected

= Performance flattens out due to workflow structure

= GlusterFS performs 13-16% better than P2P
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Discussion

Bottlenecks

— Main problem with NFS

— GlusterFS has no central server

— P2P RIS is not a bottleneck based on benchmarks
Latency

— P2P query overhead harms small file performance

— Not an issue for GlusterFS (just a hash to find the host)
Load Balancing

— P2P does not try to control data placement

— GlusterFS distributes data more evenly

Small reads
— P2P always fetches the entire file
— GlusterFS can fetch only the blocks required
=..Can.overlap.communication.and.computation
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Conclusion

= QOur experiment did not work out as we hoped, but
produced some valuable results

— RIS server was not a bottleneck
— Overheads were significant for small files
= We now have a better understanding of the problem

— Partial reads may be important for some workflows
— Locality and load balancing are important
— Need to consider planning and scheduling data movement
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Future Work

= Experiment with more workflows

= Compare with alternative data storage solutions
— e.g. SRM, IRODS

= Study the I/O patterns of different workflows
— e.g. partial reads

= Optimize the system, especially latencies
* Investigate techniques for planning data placement
= Make use of data-aware scheduling heuristics
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