Peer-to-Peer Data Sharing for
Scientific Workflows on Amazon EC2

Rohit Agarwal

Indian Institute of Technology, Ropar
ragarwal @ijitpr.ac.in

Gideon Juve, Ewa Deelman

USC Information Sciences Institute
{gideon,deelman}@isi.edu

USC\fiterbi WORKS, November 12, 2012 Z%\
School of Engineering

Workflows in the Cloud

= Advantages
— Provisioning (compute and storage)
— Elasticity
— Reproducibility
— Appliances (e.g. Galaxy)
— Control over environment (esp. for legacy)

= Disadvantages
— Administration
— Virtualization overhead
— Resource limitations (not really infinite, no queuing)
— Cost relative to alternatives (campus clusters, grid)
— Cost/Performance tradeoffs

USCWterbi WORKS 2012, Salt Lake City, UT Z%
School of Engineering

Deploying Workflows in the Cloud

= Could develop Workflow as a Service (PaaS or SaaS)

= Can deploy existing software on laaS clouds

= “Virtual Clusters”

= New tools: Nimbus Broker, cloudinit.d, Wrangler, Precip

Pegasus GridFTP Server Worker
Node

Shared
Worker File System
Node
Condor

Submit Host Head Node “

Worker
Node

Gatekeeper

LRM

Submit Site Grid Site

USC\fiterbi WORKS 2012, Salt Lake City, UT %
School of Engineering

Motivations for this Work

Data-intensive workflows are limited by I/O performance
— /0 is becoming the bottleneck rather than throughput
Many workflows share data using files
— Task A writes a file, task B reads it
— File management is critical
Write-once
— Typically, files are only written once, never updated
— Can replicate files without worrying about consistency
Three ways to share files
1. Use a shared storage system (POSIX or non-POSIX)
2. Transfer files from submit host to workers and back
3. Transfer files directly from one worker to the next

USCWterbi WORKS 2012, Salt Lake City, UT Z%
School of Engineering

Previous Study on Data Sharing Options

= Goal
— Better understand how storage systems affect performance
— Compare storage costs on commercial clouds
= Deployed several different storage systems
— Local, NFS, S3, PVFS2, GlusterFS (distribute and NUFA)
= Used three different workflow applications with different
resource requirements
— Montage (astronomy, data-intensive)
— Broadband (seismology, memory-intensive)
— Epigenome (bioinformatics, CPU-intensive)
= Compared performance and cost of different file system
options

G. Juve, et al., “Data Sharing Options for Scientific Workflows on Amazon EC2”,
Supercomputing, 2010.

USCWterbi WORKS 2012, Salt Lake City, UT Z%
School of Engineering

Results for Montage

$9.00
9000 > $8.00 | "NFS ®GFS (NUFA)
8000 o *GFS (dist.) "PVFS2
v 70 ¥ 5700 7 wgg *Local
© 7000 - GFS (NUFA) | | &
c S $6.00 7| "NFS (shared)
S 6000 \ = GFS (dist.) >
@ 5000 ‘%\K = PV/FS2 g $5.00
g 4000 . ‘g’ $400
£ 3000 Local C_; $3.00
& 2000 5 $2.00
“UNFS (shared) ©
1000 < $1.00 -
0 - - - - $0.00 -
1/8 2116 4/32 8/64 1/8 2/16 4/32 8/64
Number of Nodes/Cores Number of Nodes/Cores
Makespan Cost
= PVFS didn’t handle smalli = NFS and S3 have extra

files well

= S3 had too much overhead
= NFS did comparatively well
= GlusterFS came out on top

USC Viterbi

School of Engineering

WORKS 2012, Salt Lake City, UT

costs

= Performance improvement

does not offset increased
cost

Z29)

Approach

= Develop storage service to facilitate peer-to-peer transfers
— Applies to environments other than clouds

= New files are written to the local disk
— No network I/0 for writes
= Files are replicated on-demand

— Each time a task runs on a worker, all of its input files are
replicated to that worker

= Files cached on each worker node
— Enabled by write-once, no consistency issues

= Workflow tasks are wrapped by I/O operations
1. Fetch input files
2. Run task
3. Register output files

USCWterbi WORKS 2012, Salt Lake City, UT Z%
School of Engineering

System Design

p
. Replica Index
= Replica Index Server Server
— Stores mappings of logical file e | U URLS
names to URLs \Breland

= Cache Daemon
— Manages local storage on each

Server

worker ’ .
i Cach Cach
— Serves local replicas to peers [oache } »[ache j
— Retrieves remote replicas from /4 N\
. . Storage Storage
= Command-line Client X 7
— Get files from remote storage [Command-line] [Command-line]
Client Client
— Put files into local storage
Worker Worker

USCWterbi WORKS 2012, Salt Lake City, UT 7%
School of Engineering

Replica Index Server Throughput Benchmark

Throughput (ops/sec)

700

(o))
o
o

(o
o
o

DS
o
o

w
o
o

200

Replica Index Server Throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Clients

= Set up RIS on m1.xlarge, issued 1000 add operations
each from 1-16 clients on m1.medium instances

= RIS achieved a peak throughput of ~650 ops/sec

USCViterbi

School of Engineering

WORKS 2012, Salt Lake City, UT

Z29)

Benchmarked vs. Observed RIS Throughput

Average requests per second observed for a 10-degree Montage

workflow
Nodes / Cores | Entries in RIS | _ ' orkflow Average put
runtime (sec) requests/second
2/8 63558 6699 9.5
4/16 76688 4705 16.3
8/32 N/A 3690 N/A
16 /64 87073 3704 23 5

= Ran 10 degree workflow using 8-64 cores (m1.xlarge)

= Observed RIS throughput (10-25 ops/sec) is much less
than benchmarked throughput (650 ops/sec)

= RIS should not be the bottleneck for workflows and
resource pools of this size

USC\fitCI'bi WORKS 2012, Salt Lake City, UT 7%
School of Engineering

Cache Daemon Benchmarks

Implementation | OMB | 1MB | 10MB | 100 MB
Put Latency (sec) oPY ‘ 0.007 0.009 0.35 4.36
symlink 0.008 0.007 0.008 0.008
Implementation 0 MB 1 MB 10 MB 100 MB
copy 0.016 0.031 0.178 3.951
Get Latency (sec) symlink 0.017 0.033 0.146 1.841
symlink+fsync 0.017 0.073 0.373 3.182
Implementation 1 MB 10 MB 100 MB
copy 31.784 56.048 25.31
Get Bandwidth (MB/sec) symlink 30.571| 68734 54.329
symlink+fsync 13.776 26.824 31.423

= Disk performance: ~38 MB/s write, ~109 MB/s read

= Network performance: ~89 MB/s

= Bottom line: Latency limits performance for smaller files

USC Viterbi

School of Engineering

WORKS 2012, Salt Lake City, UT

Z33)

Workflow Performance Comparison
Reprojection) NS
= Application: Montage *

— Creates science-grade Background — i
astronomical image mosaics Rectification /N

= Test workflow i NS
— 10 degree square area »
Co-addition = l i
— 19,320 tasks S
— 13 GB input, 88 GB output B |

Reformatting

Image: John Good, Caltech

USCWterbi WORKS 2012, Salt Lake City, UT 7%
School of Engineering

Storage Systems

NFS
— Centralized file system

— Used a dedicated
m1.xlarge instance

GlusterFS
— Distributed file system
— Used “distribute” mode

— Each worker participates
in the file system

P2P
— Our approach

— RIS co-located with
submit host

\\
2 Condor
¥ S
o =
NFS Server ~ |
. \:
L]
Pegasus 3> Workers
DAGMan
Condor é _—
Submit Host
Condor
GlusterFS
\\
~
S~
Pegasus = N S
DAGMan o
Condor é w n
Submit Host Workers

Pegasus s~
DAGMan

Condor
Cache Daemon

-~

NS

. \\:
L]

Condor
RIS é

Submit Host

USCViterbi

School of Engineering

WORKS 2012, Salt Lake City, UT

Z29)

Workers

Experiment Setup

DAGMan

Submit Node

Worker Node

Worker Node

Worker Node

Amazon EC2

USC\fiterbi WORKS 2012, Salt Lake City, UT %
School of Engineering

Performance Comparison

9000
8000

0__‘/-0-—"

+— =»=GlusterFS

=0=NFS

«=p2p

2|8 4|16 8|32 16|64
Nodes|Cores

= NFS performance is flat, as expected

= Performance flattens out due to workflow structure

= GlusterFS performs 13-16% better than P2P

USCV1terb1

School of Engine

WORKS 2012, Salt Lake City, UT

Z29)

Discussion

Bottlenecks

— Main problem with NFS

— GlusterFS has no central server

— P2P RIS is not a bottleneck based on benchmarks
Latency

— P2P query overhead harms small file performance

— Not an issue for GlusterFS (just a hash to find the host)
Load Balancing

— P2P does not try to control data placement

— GlusterFS distributes data more evenly

Small reads
— P2P always fetches the entire file
— GlusterFS can fetch only the blocks required
=..Can.overlap.communication.and.computation

USC Viterbi WORKS 2012, Salt Lake City, UT

School of Engineering

Z29)

Conclusion

= QOur experiment did not work out as we hoped, but
produced some valuable results

— RIS server was not a bottleneck
— Overheads were significant for small files
= We now have a better understanding of the problem

— Partial reads may be important for some workflows
— Locality and load balancing are important
— Need to consider planning and scheduling data movement

USCWterbi WORKS 2012, Salt Lake City, UT Z%
School of Engineering

Future Work

= Experiment with more workflows

= Compare with alternative data storage solutions
— e.g. SRM, IRODS

= Study the I/O patterns of different workflows
— e.g. partial reads

= Optimize the system, especially latencies
* Investigate techniques for planning data placement
= Make use of data-aware scheduling heuristics

USCWterbi WORKS 2012, Salt Lake City, UT Z%
School of Engineering

