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Outline

o Scientific Workflows
— What are scientific workflows?

« Workflows and Clouds
— Why (not) use clouds for workflows?

— How do you set up an environment to run
workflows in the cloud?

» Evaluating Clouds for Workflows

— What is the cost and performance of running
workflow applications in the cloud?
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Scientific Workflows
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Science Applications

« Scientists often need to:
— Integrate diverse components and data
— Automate data processing steps
— Repeat processing steps on new data
— Reproduce previous results
— Share their analysis steps with other researchers
— Track the provenance of data products
— Execute analyses in parallel on distributed resources
— Reliably execute analyses on unreliable infrastructure

Scientific workflows provide
solutions to these problems
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Scientific Workflows

* QOrchestrate complex, multi-stage scientific computations

« Expressed in high-level workflow languages
— DAGs, scripting languages, data flow, actors, etc.

« Can be automatically parallelized on distributed resources

—
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Epigenomics Workflow 0
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Pegasus Workflow Management System

Compiles abstract workflows to executable workflows

Designed for scalability
— Millions of tasks, thousands of resources, terabytes of data

Enables portability

— Local desktop, HPC clusters, grids, clouds

Does not require application code changes

Features

— Replica selection, transfers, registration, cleanup

— Task clustering for performance and scalability

— Reliability and fault tolerance e

— Monitoring and troubleshooting C\
— Provenance tracking

— Workflow reduction pagasvs
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John Good (Caltech)

 Montage Galactic Plane Workflow
— 18 million input images (~2.5 TB)
_ 900 output images (2.5 GB each, 2.4 TB total) X 17
— 10.5 million tasks (34,000 CPU hours)

« Scientific workflow management systems are designed
to automatically distribute data and computations for
these large applications
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Workflows and Clouds
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Benefits of Clouds for Workflows

Custom Execution Environments

— Workflows often contain diverse legacy code

— VM images can be customized for the application
Provisioning

— On-demand, elastic

Reproducibility, Sharing and Provenance

— VM images capture the entire software environment
— Can be re-launched to repeat experiment

— Can be shared with other scientists (e.g. appliances)
— Can be stored as part of provenance

Economics (Commercial Clouds)

— Pay instead of waiting
— No premium to scale
— Cost/performance tradeoffs

10
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Drawbacks of Clouds for Workflows

Administration

— Administration is still required

— The user is responsible for the environment
Complexity

— Deploying workflow applications

— Provisioning

— Cost/performance tradeoffs

Performance
— Virtualization overhead, non-HPC resources

Other issues
— Vendor lock-in
— Security
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Cloud Hierarchy
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This talk will focus on deploying
workflows on laaS clouds
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Typical Grid/HPC Cluster Setup
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Virtual Clusters

* One approach to deploying workflows in the cloud is to
replicate grid/cluster environments

« Grids and clusters are already configured for executing
large-scale, parallel applications

* Infrastructure clouds only provide raw resources
* The challenge is to deploy Virtual Clusters

* Some software exists to support this:
— Chef and Puppet
— Nimbus Context Broker
— cloudinit.d
— StarCluster
— Wrangler
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Virtual Cluster Challenges

* Required environment is composed of multiple
nodes with different roles

— e.g. submit host, worker nodes, file system

 |Infrastructure clouds are dynamic

— Provision on-demand
— Configure at runtime

* Deployment is not trivial

— Manual setup is error-prone and not scalable

— Scripts work to a point, but break down for complex
deployments
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Virtual Cluster Requirements

Automatic deployment
— Scriptable and repeatable

Complex dependencies between VMs
— No pre-defined architectures
Dynamic provisioning / elasticity
— Add and remove nodes at runtime
« Multiple cloud providers
— Different provisioning interfaces
* Monitoring
— Periodic failure checking and error reporting
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Wrangler Deployment Service

* VC deployment service
Deployment description

G. Juve, E. Deelman, “Automating Application Deployment in Infrastructure Clouds”, 3rd IEEE

Declarative XML syntax
DAG-based dependencies

User-defined plugins
Multiple Interfaces

Multiple Resource Providers

Command-line, XML-RPC,
Python API

Current: EC2, Eucalyptus
Future: Nimbus, OpenStack

Coordinator

Cloud Resource
Provider

v

o

Virtual Machine

Database

Cloud Resource
Provider
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Cloud
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Cloud

International Conference on Cloud Computing Technology and Science (CloudCom), 2011.




University of Southern California

Deployment Request

<deployment>: Set of virtual <deployment>
machines that collectively <node name="server">

. | t licati <provider name="amazon">
Implement an application. <image>ami1-912837</image>

<node>: A single VM.

</provider>

. . . <plugin script="nfs_server.sh">
<pl'OVIdel'>. Spemﬂes the cloud <param name="EXPORT">/mnt</param> Create
resource provider to use to </plugin> \L identical
provision the VM, and the VM </node> VMs
parameters. <node name="client" count="3" group="clients">
<provider name="amazon"> /T\ Depend on
<pl in>: Specifi th I in <}mage>ggi}:?@%@dmag»' a Single
plug - opeciiies the plugl <instance-type>ml.small</instance-type> d
script, and parameters to use node or a
when configuring the VM. </provider> _ group
<plugin script="nfs_client.sh">
<param name="SERVER">
<depend5>: Enables user to <ref node="server" attribute="local-1pv4">
specify ordering of nodes for </param>
provisioning and configuration. <param name="PATH">/mnt</param>
<param name="MOUNT">/nfs/data</param>
</plugin> .
<ref>: Enables nodes to be <depends node="server"/> Client ’needs
configured using attributes of </node> server’s IP

other nodes. </deployment> address
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Dependencies

« Specifies dependencies between VMs
— e.g. NFS client requires NFS server

 Model as a Directed Acyclic Graph (DAG)

— Determines order of configuration
— Easy to reason about adding / removing VMs

Condor
Master
App Cache

Server Server

Condor Condor Condor
Worker Worker Worker

Condor Pool Web Application
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Groups

A collection of mutually-
dependent nodes

* For systems that require
nodes to know about each Peer Peer Peer
Other PVFS Group

— P2P systems
— parallel file systems

« Configuration happens

after dependencies PVFS Parallel File
register, not after they are System
configured

— Can get IP address, but not
custom attributes
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Plugins

« Define the behavior of a VM
« Implemented as shell/perl/python scripts
» User-defined, automatically transferred to VM

Plugin Commands

start: Generate configuration files,
start necessary processes,
advertise custom attributes.

stop: Terminate running
processes and clean up.

status: Check to make sure that
the VM is in a valid state.

#!/bin/bash -e
PIDFILE=/var/run/condor/master.pid
SBIN=/usr/local/condor/sbin
CONF=/etc/condor/condor_config.local

if [ “$1” == “start” ]; then
if [ "$CONDOR HOST" == "" ]; then
echo "CONDOR HOST not specified”
exit 1
fi

cat > $SCONF <<END
CONDOR_HOST = S$CONDOR_HOST
END
$SBIN/condor master —pidfile $PIDFILE
elif [ “$1” == “stop” ]; then
kill —QUIT $(cat S$PIDFILE)
elif [ “$1” == “status” ]; then
kill -0 $(cat $SPIDFILE)
fi

condor_master.sh
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Example Deployment
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Dynamic Provisioning

* Resource requirements of workflows change over time
* Would like to adapt dynamically

— Solution is application-specific

— Auto Scaling for web servers
* Important research topic
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Evaluating Clouds for
Workflows
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Evaluating Clouds for Workflows

Resource evaluation

— Characterize performance, compare with grid
— Resource cost, transfer cost, storage cost
Storage system evaluation

— Compare cost and performance of different distributed
storage systems for sharing data in workflows

Case study: mosaic service (long-term workload)
Case study: periodograms (short-term workload)
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Cloud and grid environments are
functionally identical
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Applications Evaluated

* Montage (astronomy)
— 1/0: High (95% of time waiting on 1/O)
— Memory: Low
— CPU: Low
« Epigenome (bioinformatics)
— 1/0O: Low
— Memory: Medium
— CPU: High (99% of time in CPU)

« Broadband (earthquake science)
— 1/O: Medium
— Memory: High (75% of time tasks use > 1GB)
— CPU: Medium
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Resource Performance Evaluation

* Run workflows on single instances of different
resource types (using local disk)

* Goals:
— Compare performance/cost of different resource types
— Compare performance of grid and cloud

— Characterize virtualization overhead

Type Arch. | CPU Cores Memory | Network Storage Price
ml.small 32-bit | 2.0-2.6 GHz Opteron 1/2 1.7 GB 1-Gbps Ethernet Local disk | $0.085/hr
ml.large 64-bit | 2.0-2.6 GHz Opteron 2 7.5 GB 1-Gbps Ethernet Local disk $0.12/hr
ml.xlarge 64-bit 2.0-2.6 GHz Opteron 4 15 GB 1-Gbps Ethernet Local disk $0.68/hr
cl.medium | 32-bit | 2.33-2.66 GHz Xeon 2 1.7 GB 1-Gbps Ethernet Local disk $0.17/hr
cl.xlarge 64-bit | 2.33-2.66 GHz Xeon 8 7.5 GB 1-Gbps Ethernet Local disk $0.68/hr
abe.local 64-bit | 2.33 GHz Xeon 8 8 GB 10-Gbps InfiniBand Local disk N/A
abe.lustre 64-bit | 2.33 GHz Xeon 8 8 GB 10-Gbps InfiniBand Lustre N/A

Resource Types Used

G. Juve, E. Deelman, K. Vahi, G. Mehta, G. B. Berriman, B. Berman, P. Maechling, Scientific Workflow
Applications on Amazon EC2, e-Science, 2009.
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Cloud Resource Performance
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¥ c1l.medium
W cl.xlarge
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Application

Large difference in performance

The best choice will depend on
the application and the cost/
performance requirements of the
user

¥ m1l.small

Epigenome

Virtualization overhead is less
than 10%

Parallel file system is biggest
advantage for Abe
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Cost Analysis

* Resource Cost
— Cost for VM instances
— Billed by the hour
« Transfer Cost
— Cost to copy data to/from cloud over network
— Billed by the GB

« Storage Cost
— Cost to store VM images, application data
— Billed by the GB-month, # of accesses
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Resource Cost

52.50 ¥ ml.small
¥ ml.large
$2.00 m1l.xlarge
- ¥ cl.medium
c_% W cl.xlarge
8 $1.50 - '
o
8
$1.00 -
N n L ' L lI
$0.00 '
Montage Broadband Epigenome
Application
 The per-workflow cost is low * Resources with best
 m1.small is not the cheapest performance are not cheapest

. m1.large is most cost-effective ~ * Per-hour billing affects price/
performance tradeoff
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Transfer Cost

Transfer Sizes

N\
Application | Input Output Logs Application | Input | Output | Logs I/Total
Montage 4291 MB| 7970 MB| 40 MB| | Montage $0.42 | $1.32| < $0.o14 $1.75
Broadband 4109 MB 159 MB| 5.5 MB| | Broadband | $0.40 | $0.03| < s0.01| $0.43
Epigenome 1843 MB 299 MB| 33 MB| | Epigenome | $0.18 | $0.05 | < $0.01\ $0.23

Transfer Costs

« Cost of transferring data to/from cloud
— Input: $0.10/GB (first 10 TB, sometimes discounted)
— Output: $0.17/GB (first 10 TB)
* Transfer costs can be high
— For Montage, transferring data costs more than

computing it

« Costs can be reduced by storing input data in
the cloud and using it for multiple workflows

N
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Storage Cost

« Storage Charge « S3
— Price for storing data — Storage: $0.15 / GB-month
— Per GB_month — Access: PUT: $0.01 /1,000
e Access Charge — GET: $0.01 /10,000
— Price for accessing data  ° EBS
— Per operation — Storage: $0.10 / GB-month

. _ Access: $0.10 / million 10
« Short-term storage is ceess: $0.10 /million [Os

relatively inexpensive

Application Volume Size Monthly Cost Image Size W
Montage 5GB [ | $0.66 _

Broadband 5GB \ $0.60 32-bit 773 MB $0.11 >
Epigenome 2GB \m&/ 64-bit 729 MB \b

Storage of Input data in EBS Storage of VM images in S3
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Storage System Evaluation

 Investigate options for storing intermediate data for
workflows on a virtual cluster

— Input and output data are transferred or stored

+ Goals
— Determine how to deploy storage systems
— Compare traditional file systems with cloud storage systems
— Compare performance/cost of storage systems

« Challenges
— No custom kernels = no Lustre, Ceph (possible now)
— XtreemFS did not perform well enough to finish experiments
— Used c1.xlarge resources, no HPC instances at the time
— Storage systems tuned for streaming workloads
— Infinite number of combinations and configurations
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Storage Systems
* Local Disk

— RAIDO across ephemeral devices with XFS
— RAID helps with the EC2 “first-write penalty”

* NFS: Network file system

— 1 dedicated node (m1.xlarge)
 PVFS: Parallel, striped cluster file system

— Workers host PVFS and run tasks

— Using patched 2.6.3 because 2.8 series was not stable
* GlusterFS: Distributed file system

— Workers host GlusterFS and run tasks

— NUFA, and Distribute modes

 Amazon S3: Object-based storage system
— Non-POSIX interface required changes to Pegasus
— Data is cached on workers
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Storage System Performance (1)

Montage Performance

~-NFS -B-GlusterFS (NUFA) GlusterFS (distribute) -B-PVFS2 B-S3 Local
9000
- 8000 2
3 <
€ 7000
o
& 6000 .
@ -
g 5000 =
. 4000 X
=
S 3000 —
[+ —
2000 ey
1000
0
1/8 2/16 4/32 8/64

Number of Nodes/Cores

Montage — I/0O-bound

« Large number (30K) of small files (a few MB)
* GlusterFS does very well

« S3 performs poorly because of latency

* PVFS does not handle small files well
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Storage System Performance (2)

Broadband Performance

“-NFS  #-GlusterFS (NUFA) GlusterFS (distribute)  ™PVFS2 5-s3 Local
8000

1/8 2/16 4/32 8/64
Number of Nodes/Cores

Broadband — Memory intensive
* BB reuses many files — better S3 cache performance

 PVFS performance due to the large number of small files
 NFS performance is a mystery
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Storage System Performance (3)

Epigenome Perofrmance

~-NFS -B-GlusterFS (NUFA) GlusterFsS (distribute) —“#-PVFS2 #-S3 Local
6000

w
o
o
o

4000

3000

2000

Runtime (seconds)

1000

1/8 2/16 4/32 8/64
Number of Nodes/Cores

Epigenome — CPU-bound

« Storage system did not matter much for CPU-bound
application
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Resource Cost (by Storage System)

Montage Cost Epigenome Cost
¥ NFS " NFS
6.00
2 51000 | m Glusterfs (NUFA) 3 ’ ¥ GlusterFS (NUFA)
(=} s GlusterFS (distribute) O <500 GlusterFS (distribute)
8.00
% W PVFS2 % W PVFS2
$4.00 =
S 600 "3 s >3 |
- - " loca
o o
8. Local -4 $3.00
+H 54.00 '
o O $2.00
("] (&)
$0.00 $0.00
1 2 4 8 1 2 4 8
Number of Worker Nodes ‘ Number of Nodes
Broadband Cost

« 33, NFS are at a disadvantage s1400

because of extra charges 5 20 et
- Performance benefit of using § ™" | e
multiple nodes does not offset 3 ™" |-
increased cost g z " Loca
$2.00
$0.00

Number of Worker Nodes



University of Southern California

Case Study: Mosaic Service

 Montage image mosaic service
— Currently hosted by NASA IPAC
— Computes mosaics on-demand
using local cluster
« Current service workload:
— 10 TB 2MASS dataset
— 1,000 x 4 degree mosaics / month

 Which is more cost-effective,
cloud or local? .
— 3 year operating cost comparison Rho Oph Dark Cloud, Image

Courtesy of 2MASS, IPAC, Caltech
— Assume management costs are the
same for both

G. B. Berriman, Gideon Juve, Ewa Deelman, Moira Regelson, Peter Plavchan, The Application of Cloud
Computing to Astronomy: A Study of Cost and Performance, e-Science, 2010.
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Cost Co

mparison

Item Cost ($)

12 TB RAID 5 disk farm and enclosure (3 yr support) 12,000

Dell 2650 Xeon quad-core processor, 1 TB staging area 5,000

Power, cooling and administration 6,000

Total 3-year Cost 23,000

Cost per mosaic 0.64

Local Option
Item Price ($) Item Price ($)
Tnput Transfer (10 TB) 1,024.00 Input Transfer (10 TB) 1,024.00
Output Transfer (24 TB 3 691.41 Output Transfer (24 TB) 3,691.41
PUT Ops (5.24 M) 2243
GET Ops (14.4 M) 14.40

Input 1/0 (10 TB) 24.58 Compute (cl.medium) 4,467.60
Output I/0 (27 TB) 67.50 ' ‘ :
Compute (c1.medium) 4,467.60
Total _ 46,139.08 Total w/ Normal Storage 64,545.84
Cost per mosaic 1.28 Cost per mosaic (Normal) 1.79

Amazon EBS Option

Amazon cost is ~2X local

Reduced Redundancy Storage (10TB

W Drad

36,864.00

A

Cost per mosaic (RR)

Amazon S3 Options
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Case Study: Perlodograms

104 Periodogram

* What is a periodogram?? S
— Calculates the significance of different " EsPe0
frequencies in time-series data to £
identify periodic signals. JW
— Useful tool in the search for exoplanets MWWW W“wa1é i

Period (time units)

« NStED Periodogram tool BLS periodogram for Kepler -4b, the
. . smallest transiting exoplanet discovered
— Fast, parallel implementation of by Kepler to date.
periodograms algorithms in portable C =~ s swoswesszree
Planet (f Star )
A
é Light Curve
o Phased Light Curve for Kepler-4b
> showing transiting exoplanet signal.

G. B. Berriman, Gideon Juve, Ewa Deelman, Moira Regelson, Peter Plavchan, The Application of Cloud
Computing to Astronomy: A Study of Cost and Performance, e-Science, 2010.



University of Southern California

Kepler Periodogram Atlas

« Compute periodogram atlas for public Kepler dataset
— ~200K light curves X 3 algorithms X 3 parameter sets
— Each parameter set was a different “Run”, 3 runs total

— EC2 worked great for small workflows, grid was easier for
large workflows

Run 1 (EC2) Run 2 (EC2) Run 3 (TeraGrid)
Tasks 631992 631992 631992
Mean Task Runtime 7.44 sec 6.34 sec 285 sec
R . Jobs 25401 25401 25401
untimes Mean Job Runtime 3.08 min 2.62 min 118 min
Total CPU Time 1304 hr 1113 hr 50019 hr
Total Wall Time 16.5 hr 26.8 hr 448 hr
Input Files 210664 210664 210664
Inputs Mean Input Size 0.084 MB 0.084 MB 0.084 MB
Total Input Size 17.3 GB 17.3 GB 17.3 GB
Output Files 1263984 1263984 1263984
Outputs Mean Output Size 0.171 MB 0.124 MB 5.019 MB
Total Output Size 105.3 GB 76.52 GB 3097.87 GB Compute
Compute Cost $179.52 $94.61 $4,874.24 is ~10X
Cost Output Cost $15.80 $11.48 $464.68
Total Cost $195.32 $106.08] $5,338.92] Transfer

Amazon: 16 x c1.

xlarge instances = 128 cores

Ranger: 8-16 x 16 core nodes = 128-256 cores

*

Actual cost

*

Estimated cost
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Conclusions

* Workflows help scientists orchestrate complex, multi-
step simulations and analyses

« Clouds have many benefits and drawbacks for workflows

» Deploying workflows in the cloud is difficult, but there are
tools that can help

* The performance of workflows in the cloud is
manageable

* There are many cost/performance tradeoffs to consider
* Clouds are not cheaper or easier than alternatives

* More work needs to be done on tools for deployment,
PaaS workflows, and dynamic provisioning



University of Southern California

Pegasus Tutorial

« Goes through the steps of creating, planning,
and running a simple workflow

« Virtual machine-based A ~
— VirtualBox )
— Amazon EC2
— FutureGrid pagasvs

http://pegasus.isi.edu/tutorial
http://pegasus.isi.edu/futuregrid/tutorials
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