
Pegasus WMS: A workflow system for
running large scale workflows on

national cyberinfrastructure

Karan	
 Vahi	

	

Science	
 Automa1on	
 Technologies	
 Group	

USC	
 Informa1on	
 Sciences	
 Ins1tute	

2

Outline of Talk

§  Introduction to Scientific Workflows and Pegasus!
§  Data Management in Pegasus !
§  Workflow Monitoring and Debugging!

3

Scientific Workflows

§  Capture individual data transformation and analysis
steps

§  Large monolithic applications broken down to
smaller jobs
–  Smaller jobs can be independent or connected by some control flow/

data flow dependencies
–  Usually expressed as a Directed Acyclic Graph of tasks

§  Allows the scientists to modularize their application
§  Scaled up execution over several computational

resources
§  Provide automation
§  Foster Collaborations

*The full moon is 0.5 deg. sq. when viewed form Earth, Full Sky is ~ 400,000 deg. sq.

Generating mosaics of the sky (Bruce Berriman, Caltech)

Size of the
mosaic in
degrees
square*

Number of
jobs

Number of
input data
files

Number of
Intermediate
files

Total	

Data	

Footprint	

Approx.
execution time
(20 procs)

1 232 53 588 1.2GB 40 mins

2 1,444

212 3,906 5.5GB 49 mins

4 4,856 747 13,061 20GB 1hr 46 mins

6 8,586 1,444 22,850 38GB 2 hrs. 14 mins

10 20,652

3,722 54,434 97GB 6 hours

BgModel

Project

Project

Project

Diff

Diff

Fitplane

Fitplane

Background

Background

Background

Add

Image1

Image2

Image3

5

Workflows – Launch and Forget

§  A single workflow can take days, weeks or even
months

§  Automates tasks user could perform manually…
…but WMS takes care of automatically
§  Includes features such as retries in the case of

failures – avoids the need for user intervention
§  The workflow itself can include error checking
§  The result: one user action can utilize many

resources while maintaining complex job inter-
dependencies and data flows

§  Maximizes compute resources / human time

6

Pegasus
Workflow Management System (est. 2001)

§  A collaboration between USC and the Condor Team at UW
Madison (includes DAGMan)

§  Maps a resource-independent “abstract” workflow onto
resources and executes the “executable” workflow

§  Used by a number of applications in a variety of domains

§  Provides reliability—can retry computations from the point of
failure

§  Provides scalability—can handle large data and many
computations (kbytes-TB of data, 1-106 tasks)

§  Infers data transfers, restructures workflows for performance

§  Automatically captures provenance information

§  Can run on resources distributed among institutions, laptop,
campus cluster, Grid, Cloud

7

Pegasus WMS

API Interfaces

Portals

Other Workflow
Composition

Tools: Grayson,
Triana, Wings

Pegasus WMS

Mapper

Engine

Scheduler

Users

Distributed Resources
Campus Clusters, Local Clusters, Open Science Grid, XSEDE

GRAM
P
B
S

LSF SGE

C
O
N
D
O
R

STORAGECOMPUTEMIDDLEWARE

Cloudware
OpenStack

 Eucalyptus, Nimbus

GridFTP

HTTP

FTP

SRM

IRODS

Storage

SCP

Compute
 Amazon EC2, RackSpace,

FutureGrid

Workflow
DB

Monitoring

Logs

Notifications

S3

Clouds

8

Pegasus Workflow Management System

§  Abstract Workflows - Pegasus input workflow
description
–  Workflow “high-level language”
–  Only identifies the computation, devoid of resource descriptions,

devoid of data locations
–  File Aware

§  Pegasus is a workflow “compiler” (plan/map)
–  Target is DAGMan DAGs and Condor submit files
–  Transforms the workflow for performance and reliability
–  Automatically locates physical locations for both workflow

components and data
–  Collects runtime provenance

B B

D

A

B B

C C C C

9

Abstract to Executable Workflow Mapping - Discovery

§  Data
–  Where do the input datasets

reside?

§  Executables
–  Where are the executables

installed ?
–  Do binaries exist somewhere

that can be staged to remote
grid sites?

§  Site Layout
–  What does a execution site

look like?

Pegasus
Workflow
Compiler

Transformation
Catalog

Site Catalog

Replica Catalog

Abstract Workflow

Executable Workflow

10

Abstract to Executable Workflow Mapping

§  Abstraction provides
–  Ease of Use (do not need to

worry about low-level
execution details)

–  Portability (can use the same
workflow description to run on
a number of resources and/or
across them)

–  Gives opportunities for
optimization and fault
tolerance

•  automatically restructure
the workflow

•  automatically provide
fault recovery (retry,
choose different
resource)

11

Outline of Talk

§  Introduction to Scientific Workflows and Pegasus!
§  Data Management in Pegasus !
§  Workflow Monitoring and Debugging!

12

Data Management in Pegasus

§  Data Discovery
–  Where do input datasets and executables reside
–  Can I select amongst multiple input locations

§  Move data to where the jobs execute
–  How do you ship in the small/large amounts data required by the workflows?"
–  Can I use SRM? How about GridFTP? HTTP and Squid proxies?"
–  Can I use Cloud based storage like S3 on EC2?"

§  Data Reuse
–  Reuse existing data products instead of re-computing them

§  Data Space Optimizations
–  Remove files when no longer required by the workflow

13

Data Discovery - Replica Catalog

§  Replica Catalog stores mappings between logical filenames and their
target locations

§  Used to
–  discover input files for the workflow
–  track data products created
–  Data is replicated for scalability, reliability and availability

§  Supported Types
–  File based Replica Catalog

•  useful for small datasets
•  cannot be shared across users

–  Database based Replica Catalog
•  useful for medium sized datasets
•  can be used across users

–  Globus Replica Location Service
•  useful for large scale data sets across multiple users
•  LIGO’s LDR deployment that scales to millions of files

14

Data Discovery – Replica Selection

§  Input Files maybe replicated at multiple sites
–  How do you select the which input file to access?
–  LIGO Data Grid

•  Multiple tiers of replication
•  Central Index of locations of inputs based on RLS
•  However, not all users have access to replicas

§  Supported Replica Selection Policies
–  Prefer local files and symlink against them
–  For compute sites specify preferred locations or blacklist

sites
–  User defined policies based on regular expression ranks

15

Move data to where the jobs execute

!
§  Shared Filesystem setup (typical of XSEDE and HPC sites)!

–  Worker nodes and the head node have a shared filesystem, usually a parallel
filesystem with great I/O characteristics"

–  Can leverage symlinking against existing datasets"

§  NonShared filesystem setup using an existing storage element for
staging (typical of OSG and campus Condor pools) !

–  Worker nodes don’t share a filesystem."
–  Data is pulled from / pushed to the existing storage element."

§  Condor IO (Typical of large Condor Pools like CHTC)!
–  Worker nodes don’t share a filesystem"
–  Symlink against datasets available locally"
–  Data is pulled from / pushed to the submit host via Condor file transfers 

"

Three Main Configurations

Using Pegasus allows you to move from one deployment to another
without changing the workflow description!

16

WN

Head Node

WN W
W

Pegasus Lite
 Instance

WN

WN

OSG COMPUTE ELEMENT- n

Storage

STAGING STORAGE
ELEMENT

Supports independent
protocols for the get and put

interfaces

WJ
W

WJ

X

Y

WJ

X

Y

Abstract
Workflow

Condor
Queue

Directory Setup Job

Data Stagein Job

Data Stageout Job

Directory Cleanup Job

LEGEND

SI
Job

SO
Job

Executes On
Submit Host

Executes On
Submit Host

Workflow
Stagein

Job

Workflow
 Stageout

Job

WN

Head Node

WN J
J

Pegasus Lite
 Instance

WN

WN

OSG COMPUTE ELEMENT - 1

Storage

INPUT SITE n
SRM

GridFTP
irods

S3

Storage

INPUT SITE 1
SRM

GridFTP
irods

S3

Storage

OUTPUT SITE
SRM

GridFTP
irods

S3

SI
Job

Data Flow for Pegasus Workflows on OSG with
GlideinWMS and Staging Storage Element

Pegasus Planner

SUBMIT HOST

Executable
Workflow

Workflow
Setup
Job

Data
Cleanup

Job

Condor DAGMan

1

2

1'

4

2'

4'

5

HTTP
Squid
Cache

GET
INTERFACE

PUT
INTERFACE Protocols Supported:

SRM
GridFTP

HTTP
IRODS

S3
SCP

3'

3

18

Key to supporting different data configurations

§  Pegasus has a notion of staging site
§  All the auxiliary jobs added by Pegasus place or retrieve data

from the staging site

§  In case of sharedfs approach, the shared filesystem on the
compute site is the staging site

§  In non-sharedfs deployments like Clouds, OSG we have a
staging site separate from the compute site.
–  The jobs pull input data from staging site when they start up.
–  The jobs push output data to the staging site when they finish.

18

19

Workflow Reduction (Data Reuse)

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.
Reuse it.
Mark Jobs D and B to delete

Delete Job D and Job B

Useful when you have done a part of computation and then realize the
need to change the structure. Re-plan instead of submitting rescue DAG!

LIGO INSPIRAL WORKFLOWS

20 Pegasus Features Used: Data Reuse , Job Clustering, Hierarchal Workflows, Debugging
tools, Run in non shared filesystem environments

v  Continuous gravitational
waves are expected to be
produced by a variety of
celestial objects

v  Only a small fraction of
potential sources are known

v  Need to perform blind
searches, scanning the
regions of the sky where we
have no a priori information of
the presence of a source
²  Wide area, wide frequency

searches
v  Search for binary inspirals

collapsing into black holes.
v  Usually executed on the LIGO

Data Grid
v  Typical LIGO Workflow

²  185,000 nodes, 466,000 edges
²  10TB of input data accessed
²  Generates 1TB of output data

21

File cleanup

§  Problem: Running out of disk space during workflow execution

§  Why does it occur
–  Workflows could bring in huge amounts of data
–  Data is generated during workflow execution
–  Users don’t worry about cleaning up after they are done

§  Solution

–  Do cleanup after workflows finish
•  Does not work as the scratch may get filled much before during

execution

–  Interleave cleanup automatically during workflow execution.
•  Requires an analysis of the workflow to determine, when a file is no

longer required

–  Cluster the cleanup jobs by level for large workflows
Real Life Example: Used by a UCLA genomics researcher to delete TB’s
of data automatically for long running workflows!!

22

File cleanup (cont)

Montage 1 degree workflow run with cleanup

v  Description
²  Galactic Plane for generating mosaics from the

NASA Telescope Missions like Spitzer etc.
²  Used to generate tiles 360 x 40 around the

galactic equator
²  A tile 5 x 5 with 1 overlap with neighbors
²  Output datasets to be potentially used in NASA

Sky and Google Sky
²  Each per band workflow

Ø  1.6 million input files
Ø  10.5 million tasks
Ø  Consumes 34,000 CPU hours
Ø  Generates 900 tiles in FITS format

v  Ongoing Runs on XSEDE, Amazon and OSG
²  Run workflows corresponding to each of the 17

bands (wavelengths)
²  Total Number of Data Files – 18 million
²  Potential Size of Data Output – 86 TB

GALACTIC PLANE WORKFLOWS

Pegasus Features Used: Hierarchal Workflows, Job Clustering , Cleanup

24

Hierarchal Workflows – Scaling upto million node
workflows

25

Hierarchal Workflows - Scaling upto million node
workflows

26

Workflow Restructuring to improve application performance

§  Cluster small running jobs together to achieve better
performance

§  Why?
–  Each job has scheduling overhead – need to make this overhead

worthwhile
–  Ideally users should run a job on the grid that takes at least 10/30/60/?

minutes to execute
–  Clustered tasks can reuse common input data – less data transfers

Level-based clustering
B

C

B

C

B

C

B

C

A

D

B

C

B

C

B

C

B

C

A

D

27

SCEC CYBERSHAKE WORKFLOWS

Post Processing Workflows

§  For each site in the input map, generate a
hazard curve

§  Each per site workflow has

²  820,000 tasks in the workflow

²  Input Strain Green Tensor 40 GB

²  Outputs about 10GB per site

²  CPU Time used : 38 days, 23 hrs

Probability of exceeding 0.1g in 50 yrs

v  Description
²  Builders ask seismologists: “What will the peak

ground motion be at my new building in the next
50 years?”

²  Seismologists answer this question using
Probabilistic Seismic Hazard Analysis (PSHA)

Pegasus Features Used: Hierarchal Workflows, Job Clustering , Cleanup, Symlinking against existing
datasets

Proposed Runs on XSEDE for 2012
²  3 Hazard maps each covering 200 sites
²  To be run mainly on Kraken using MPI (PMC)
²  Inputs SGT : approx 15.6 TB (40 * 400 GB)
²  Outputs: 500 million files (820000/site x 600

sites) approx 5.8 TB (600 * 10 GB)
²  Number of Output Files : = about 500 million

28

Outline of Talk

§  Introduction to Scientific Workflows and Pegasus!
§  Data Management in Pegasus !
§  Workflow Monitoring and Debugging!

29

Final Piece in the Puzzle – Tracking Workflows

SCEC-­‐2009:	
 Millions	
 of	
 tasks	
 completed	
 per	
 day	

Radius = 11 million

30

Final Piece in the Puzzle – Tracking Workflows

§  Pegasus can be used to run large workflows.
§  Does the workflow system provide insight to the

workflow runs
–  Monitor the workflows
–  Debug their workflows when things go wrong

•  Imagine going through millions of job log files!
–  Generate statistics about your workflow run to determine

resources consumed.
–  Notifications when things go wrong?

Goal: Real-time Monitoring and Analysis

1.  Monitor	
 Workflows	
 in	
 real	
 1me	
 	

–  Scien1fic	
 workflows	
 can	
 involve	
 many	
 sub-­‐workflows	
 and	
 millions	
 of	
 individual	
 tasks	

–  Need	
 to	
 correlate	
 across	
 workflow	
 and	
 job	
 logs	

–  Imagine	
 going	
 through	
 hundred	
 of	
 thousands	
 of	
 log	
 files!	

–  Provide	
 real1me	
 updates	
 on	
 the	
 workflow	
 –	
 how	
 many	
 jobs	
 completed,	
 failed	
 etc	

2.  Troubleshoot	
 Workflows	

–  Provide	
 users	
 with	
 tools	
 to	
 debug	
 workflows,	
 and	
 provide	
 informa1on	
 of	
 why	
 a	
 job	

failed	

3.  Visualize	
 Workflow	
 performance	
 and	
 mine	
 performance	
 data	

–  Provide	
 a	
 workflow	
 monitoring	
 dashboard	
 that	
 shows	
 the	
 various	
 workflows	
 run	

–  Provide	
 sta1s1cs	
 about	
 your	
 workflow	
 run.	

4.  Does	
 the	
 system	
 provide	
 no1fica1ons	
 	
 when	
 things	
 go	
 wrong?	

5.   Do	
 all	
 of	
 this	
 as	
 generally	
 as	
 possible:	
 Can	
 we	
 provide	
 a	
 solu<on	
 that	

can	
 apply	
 to	
 all	
 workflow	
 systems?	

How Does Stampede Provide Interoperability

32

 Log Normalizer

AMQP Log bus

Stampede
Relational

Archive

Dashboard

Worklfow System Raw
logs

Normalized
NetLogger logs

Alerts and
summaries

cloud,grid, or
cluster

Troubleshooting Analysis

stampede_loader

Query recent and
historical data

Legend
Stampede Components

Workflow System
Components

Query
Interface

1) Common Data Model

2) High Performance Log Loader

3) Query Interface and Analysis Tools

Application
Workflow

33

Pegasus Integration with Stampede

Pegasus WMS

Pegasus
Mapper
Condor

DAGMan
Condor
Schedd

pegasus-
monitord

Stampede
SQL

Database

Query recent and
historical data

Executable
Workflow

Raw logs -
Kickstart Records

Normalized
NetLogger logsstampede_loader

Dashboard

Troubleshooting

Analysis
Legend

Stampede Components

Pegasus WMS
Components

cloud, grid, or
cluster

Query
Interface

34

Workflow Monitoring - Stampede

§  Leverage Stampede Monitoring framework with DB backend!
–  Populates data at runtime. A background daemon monitors the logs files and

populates information about the workflow to a database"
–  Stores workflow structure, and runtime stats for each task."
!

§  Tools for querying the monitoring framework!
–  pegasus-status!

•  Status of the workflow"
–  pegasus-statistics!

•  Detailed statistics about your finished workflow"

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002
Jobs 4529 0 0 4529 0 4529
Sub-Workflows 2 0 0 2 0 2
--

Workflow wall time : 13 hrs, 2 mins, (46973 secs)
Workflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

35

Workflow Debugging Through Pegasus

§  After a workflow has completed, we can run pegasus-
analyzer to analyze the workflow and provide a summary
of the run

§  pegasus-analyzer's output contains
–  a brief summary section

•  showing how many jobs have succeeded
•  and how many have failed.

–  For each failed job
•  showing its last known state
•  exitcode
•  working directory
•  the location of its submit, output, and error files.
•  any stdout and stderr from the job.

Alleviates the need for searching through large DAGMan and Condor
logs!

36

Workflow Monitoring Dashboard: pegasus-dashboard

§  A python based online workflow dashboard
–  Uses the FLASK framework
–  Beta version released in 4.2
–  Queries the STAMPEDE database

§  Lists all the user workflows on the home page and are color
coded.

–  Green indicates a successful workflow,
–  Red indicates a failed workflow
–  Blue indicates a running workflow

§  Explore Workflow and Troubleshoot (Workflow Page)
–  Has identifying metadata about the workflow
–  Tabbed interface to

•  List of sub workflows
•  Failed jobs
•  Running jobs
•  Successful jobs.

37

Workflow Monitoring Dashboard: pegasus-dashboard

§  Job Page
–  Lists information captured in kickstart record for the job.
–  Will show the various retries of the job

§  Statistics Page for the Workflow
–  Generates Statistics for the workflow, similar to pegasus-statistics

command line tool

§  Charts Page For the Workflow
–  Workflow Gantt Chart
–  Job Distribution by Count/Time
–  Time Chart by Job/Invocation

38

Workflow Monitoring Dashboard – pegasus-dashboard

Hosts Over Time – Distribution
of Different Job Types on Hosts

Jobs and Runtime over Time

Workflow Gantt Chart

39

Workflow and Task Notifications

§  Users want to be notified at certain points in the workflow
or on certain events.

§  Support for adding notification to workflow and tasks

§  Event based callouts
–  On Start, On End, On Failure, On Success
–  Provided with email and jabber notification scripts
–  Can run any user provided scripts
–  Defined in the DAX

40

Summary –
What Does Pegasus provide an Application - I

§  All the great features that DAGMan has
–  Scalability / hierarchal workflows
–  Retries in case of failure.

§  Portability / Reuse
–  User created workflows can easily be mapped to and run in

different environments without alteration.

§  Performance
–  The Pegasus mapper can reorder, group, and prioritize tasks in

order to increase the overall workflow performance.

41

Summary –
What Does Pegasus provide an Application - II

§  Provenance
–  Provenance data is collected in a database, and the data can be

summaries with tools such as pegasus-statistics, pegasus-plots, or
directly with SQL queries.

§  Reliability and Debugging Tools
–  Jobs and data transfers are automatically retried in case of failures.

Debugging tools such as pegasus-analyzer helps the user to debug
the workflow in case of non-recoverable failures.

§  Data Management
–  Pegasus handles replica selection, data transfers and output

registrations in data catalogs. These tasks are added to a workflow
as auxiliary jobs by the Pegasus planner.

42

Relevant Links

§  Pegasus: http://pegasus.isi.edu

§  Tutorial and documentation:
http://pegasus.isi.edu/wms/docs/latest/

§  Support: pegasus-users@isi.edu
 pegasus-support@isi.edu

Acknowledgements
Pegasus Team – Ewa Deelman, Gideon Juve, Rajiv
Mayani, Mats Rynge

