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Outline of Talk 

§  Introduction to Scientific Workflows and Pegasus!
§  Data Management in Pegasus !
§  Workflow Monitoring and Debugging!



3 

Scientific Workflows 

§  Capture individual data transformation and analysis 
steps 

§  Large monolithic applications broken down to 
smaller jobs 
–  Smaller jobs can be independent or connected by some control flow/ 

data flow dependencies 
–  Usually expressed as a Directed Acyclic Graph of tasks 

§  Allows the scientists to modularize their application 
§  Scaled up execution over several computational 

resources 
§  Provide automation 
§  Foster Collaborations 



*The full moon is 0.5 deg. sq. when viewed form Earth, Full Sky  is ~ 400,000 deg. sq. 

Generating mosaics of the sky (Bruce Berriman, Caltech) 
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Workflows – Launch and Forget 

§  A single workflow can take days, weeks or even 
months 

§  Automates tasks user could perform manually… 
…but WMS takes care of automatically 
§  Includes features such as retries in the case of 

failures – avoids the need for user intervention 
§  The workflow itself can include error checking 
§  The result: one user action can utilize many 

resources while maintaining complex job inter-
dependencies and data flows 

§  Maximizes compute resources / human time 
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Pegasus  
Workflow Management System (est. 2001) 

§  A collaboration between USC and the Condor Team at UW 
Madison (includes DAGMan) 

§  Maps a resource-independent “abstract” workflow onto 
resources and executes the “executable” workflow 

§  Used by a number of applications in a variety of domains 

§  Provides reliability—can retry computations from the point of 
failure 

§  Provides scalability—can handle large data and many 
computations (kbytes-TB of data, 1-106 tasks) 

§  Infers data transfers, restructures workflows for performance 

§  Automatically captures provenance information 

§  Can run on resources distributed among institutions, laptop, 
campus cluster, Grid, Cloud 
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Pegasus WMS 
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Pegasus Workflow Management System 

§  Abstract Workflows - Pegasus input workflow 
description 
–  Workflow “high-level language” 
–  Only identifies the computation, devoid of resource descriptions, 

devoid of data locations 
–  File Aware 

§  Pegasus is a  workflow “compiler” (plan/map) 
–  Target is DAGMan DAGs and Condor submit files 
–  Transforms the workflow for performance and reliability 
–  Automatically locates physical locations for both workflow 

components and data 
–  Collects runtime provenance 
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Abstract to Executable Workflow Mapping - Discovery 

§  Data 
–  Where do the input datasets 

reside? 

§  Executables 
–  Where are the executables 

installed ? 
–  Do binaries exist somewhere 

that can be staged to remote 
grid sites? 

§  Site Layout 
–  What does a execution site 

look like? 

Pegasus  
Workflow  
Compiler 

Transformation  
Catalog 

Site Catalog 

Replica Catalog 

Abstract Workflow 

Executable Workflow 
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Abstract to Executable Workflow Mapping 

§  Abstraction provides  
–  Ease of Use (do not need to 

worry about low-level 
execution details) 

–  Portability (can use the same 
workflow description to run on 
a number of resources and/or 
across them) 

–  Gives opportunities for 
optimization and fault 
tolerance 

•  automatically restructure 
the workflow 

•  automatically provide 
fault recovery (retry, 
choose different 
resource) 
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Outline of Talk 

§  Introduction to Scientific Workflows and Pegasus!
§  Data Management in Pegasus !
§  Workflow Monitoring and Debugging!
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Data Management in Pegasus 

§  Data Discovery 
–  Where do input datasets and executables reside 
–  Can I select amongst multiple input locations 
 

§  Move data to where the jobs execute  
–  How do you ship in the small/large amounts data required by the workflows?"
–  Can I use SRM? How about GridFTP? HTTP and Squid proxies?"
–  Can I use Cloud based storage like S3 on EC2?"

§  Data Reuse 
–  Reuse existing data products instead of re-computing them 
 

§  Data Space Optimizations 
–  Remove files when no longer required by the workflow 
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Data Discovery - Replica Catalog 

§  Replica Catalog stores mappings between logical filenames and their 
target locations 

§  Used to  
–  discover input files for the workflow 
–  track data products created 
–  Data is replicated for scalability, reliability and availability 

§  Supported Types 
–  File based Replica Catalog  

•   useful for small datasets 
•   cannot be shared across users 

–  Database based Replica Catalog 
•  useful for medium sized datasets  
•  can be used across users 

–  Globus Replica Location Service  
•  useful for large scale data sets across multiple users 
•  LIGO’s LDR deployment that scales to millions of files 
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Data Discovery – Replica Selection 

§  Input Files maybe replicated at multiple sites 
–  How do you select the which input file to access? 
–  LIGO Data Grid  

•  Multiple tiers of replication 
•  Central Index of locations of inputs based on RLS 
•  However, not all users have access to replicas 

 

§  Supported Replica Selection Policies 
–  Prefer local files and symlink against them 
–  For compute sites specify preferred locations or blacklist 

sites  
–  User defined policies based on regular expression ranks 
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Move data to where the jobs execute  

!
§  Shared Filesystem setup (typical of XSEDE and HPC sites)!

–  Worker nodes and the head node have a shared filesystem, usually a parallel 
filesystem with great I/O characteristics"

–  Can leverage symlinking against existing datasets"

§  NonShared filesystem setup using an existing storage element for 
staging (typical of OSG and campus Condor pools) !

–  Worker nodes don’t share a filesystem."
–  Data is pulled from / pushed to the existing storage element."

§  Condor IO ( Typical of large Condor Pools like CHTC)!
–  Worker nodes don’t share a filesystem"
–  Symlink against datasets available locally"
–  Data is pulled from / pushed to the submit host via Condor file transfers 

"

Three Main Configurations 

Using Pegasus allows you to move from one deployment to another  
without changing the workflow description! 
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Key to supporting different data configurations 

§  Pegasus has a notion of staging site 
§  All the auxiliary jobs added by Pegasus place or retrieve data 

from the staging site 

§  In case of sharedfs approach, the shared filesystem on the 
compute site is the staging site 

§  In non-sharedfs deployments like Clouds, OSG we have a 
staging site separate from the compute site. 
–  The jobs pull input data from staging site when they start up. 
–  The jobs push output data to the staging site when they finish. 

18 
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Workflow Reduction (Data Reuse) 
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LIGO INSPIRAL WORKFLOWS 

20 Pegasus Features Used: Data Reuse , Job Clustering, Hierarchal Workflows, Debugging 
tools, Run in non shared filesystem environments 

v  Continuous gravitational 
waves are expected to be 
produced by a variety of 
celestial objects  

v  Only a small fraction of 
potential sources are known 

v  Need to perform blind 
searches, scanning the 
regions of the sky where we 
have no a priori information of 
the presence of a source 
²  Wide area, wide frequency 

searches 
v  Search for binary inspirals 

collapsing into black holes. 
v  Usually executed on the LIGO 

Data Grid 
v  Typical LIGO Workflow 

²  185,000 nodes, 466,000 edges  
²  10TB of input data accessed 
²  Generates 1TB of output data 
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File cleanup 

§  Problem: Running out of disk space during workflow execution 
 

§  Why does it occur 
–  Workflows could bring in huge amounts of data 
–  Data is generated during workflow execution 
–  Users don’t worry about cleaning up after they are done 

 
§  Solution 

–  Do cleanup after workflows finish 
•  Does not work as the scratch may get filled much before during 

execution 
 

–  Interleave cleanup automatically during workflow execution. 
•  Requires an analysis of the workflow to determine, when a file is no 

longer required 

–  Cluster the cleanup jobs by level for large workflows 
Real Life Example: Used by a UCLA genomics researcher to delete TB’s 
of data automatically for long running workflows!! 
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File cleanup (cont) 

Montage 1 degree workflow run with cleanup 



v  Description 
²  Galactic Plane for generating mosaics from the 

NASA Telescope Missions like Spitzer etc. 
²  Used to generate tiles 360 x 40 around the 

galactic equator 
²  A tile 5 x 5 with 1 overlap with neighbors 
²  Output datasets to be potentially used in NASA 

Sky and Google Sky 
²  Each per band workflow  

Ø  1.6 million input files  
Ø  10.5 million tasks  
Ø  Consumes 34,000 CPU hours 
Ø  Generates 900 tiles in FITS format 

v  Ongoing Runs on XSEDE, Amazon and OSG 
²  Run workflows corresponding to each of the 17 

bands ( wavelengths ) 
²  Total Number of Data Files – 18 million 
²  Potential Size of Data Output – 86 TB 

GALACTIC PLANE WORKFLOWS 

Pegasus Features Used: Hierarchal Workflows, Job Clustering , Cleanup 



24 

Hierarchal Workflows – Scaling upto million node 
workflows 
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Hierarchal Workflows - Scaling upto million node 
workflows 
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Workflow Restructuring to improve application performance 

§  Cluster small running jobs together to achieve better 
performance 

§  Why? 
–  Each job has scheduling overhead – need to make this overhead 

worthwhile 
–  Ideally users should run a job on the grid that takes at least 10/30/60/? 

minutes to execute 
–  Clustered tasks can reuse common input data – less data transfers 

Level-based clustering 
B
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B
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SCEC CYBERSHAKE WORKFLOWS 

Post Processing Workflows 

§  For each site in the input map, generate a 
hazard curve 

§  Each per site workflow has 

²  820,000 tasks in the workflow 

²  Input Strain Green Tensor 40 GB 

²  Outputs about 10GB per site 

²  CPU Time used : 38 days, 23 hrs 

Probability of exceeding 0.1g in 50 yrs 

v  Description 
²  Builders ask seismologists: “What will the peak 

ground motion be at my new building in the next 
50 years?”  

²  Seismologists answer this question using 
Probabilistic Seismic Hazard Analysis (PSHA) 

Pegasus Features Used: Hierarchal Workflows, Job Clustering , Cleanup, Symlinking against existing 
datasets 

Proposed Runs on XSEDE for 2012 
²  3 Hazard maps each covering 200 sites  
²  To be run mainly on Kraken using MPI (PMC) 
²  Inputs SGT : approx 15.6 TB (40 * 400 GB )  
²  Outputs:  500 million files (820000/site x 600 

sites ) approx 5.8 TB (600 * 10 GB )  
²  Number of Output Files :  = about 500 million 
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Outline of Talk 

§  Introduction to Scientific Workflows and Pegasus!
§  Data Management in Pegasus !
§  Workflow Monitoring and Debugging!
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Final Piece in the Puzzle – Tracking Workflows 

SCEC-­‐2009:	
  Millions	
  of	
  tasks	
  completed	
  per	
  day	
  

Radius = 11 million 
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Final Piece in the Puzzle – Tracking Workflows 

§  Pegasus can be used to run large workflows. 
§  Does the workflow system provide insight to the 

workflow runs 
–  Monitor the workflows 
–  Debug their workflows when things go wrong 

•  Imagine going through millions of job log files! 
–  Generate statistics about your workflow run to determine 

resources consumed. 
–  Notifications when things go wrong? 



Goal: Real-time Monitoring and Analysis 

1.  Monitor	
  Workflows	
  in	
  real	
  1me	
  	
  
–  Scien1fic	
  workflows	
  can	
  involve	
  many	
  sub-­‐workflows	
  and	
  millions	
  of	
  individual	
  tasks	
  
–  Need	
  to	
  correlate	
  across	
  workflow	
  and	
  job	
  logs	
  
–  Imagine	
  going	
  through	
  hundred	
  of	
  thousands	
  of	
  log	
  files!	
  
–  Provide	
  real1me	
  updates	
  on	
  the	
  workflow	
  –	
  how	
  many	
  jobs	
  completed,	
  failed	
  etc	
  

2.  Troubleshoot	
  Workflows	
  
–  Provide	
  users	
  with	
  tools	
  to	
  debug	
  workflows,	
  and	
  provide	
  informa1on	
  of	
  why	
  a	
  job	
  

failed	
  

3.  Visualize	
  Workflow	
  performance	
  and	
  mine	
  performance	
  data	
  
–  Provide	
  a	
  workflow	
  monitoring	
  dashboard	
  that	
  shows	
  the	
  various	
  workflows	
  run	
  
–  Provide	
  sta1s1cs	
  about	
  your	
  workflow	
  run.	
  

4.  Does	
  the	
  system	
  provide	
  no1fica1ons	
  	
  when	
  things	
  go	
  wrong?	
  

5.   Do	
  all	
  of	
  this	
  as	
  generally	
  as	
  possible:	
  Can	
  we	
  provide	
  a	
  solu<on	
  that	
  
can	
  apply	
  to	
  all	
  workflow	
  systems?	
  



How Does Stampede Provide Interoperability 
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Pegasus Integration with Stampede 
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Workflow Monitoring - Stampede 

§  Leverage Stampede Monitoring framework with DB backend!
–  Populates data at runtime. A background daemon monitors the logs files and 

populates information about the workflow to a database"
–  Stores workflow structure, and runtime stats for each task."
!

§  Tools for querying the monitoring framework!
–  pegasus-status!

•  Status of the workflow"
–  pegasus-statistics!

•  Detailed statistics about your finished workflow"

------------------------------------------------------------------------------ 
Type           Succeeded Failed  Incomplete  Total     Retries   Total+Retries 
Tasks          135002    0       0           135002    0         135002        
Jobs           4529      0       0           4529      0         4529          
Sub-Workflows  2         0       0           2         0         2             
------------------------------------------------------------------------------ 
 
Workflow wall time                               : 13 hrs, 2 mins, (46973 secs) 
Workflow cumulative job wall time                : 384 days, 5 hrs, (33195705 secs) 
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs) 
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Workflow Debugging Through Pegasus 

§  After a workflow has completed, we can run pegasus-
analyzer to analyze the workflow and provide a summary 
of the run 
 

§  pegasus-analyzer's output contains 
–   a brief summary section 

•   showing how many jobs have succeeded  
•   and how many have failed.  

–  For each failed job 
•  showing its last known state 
•  exitcode 
•  working directory 
•  the location of its submit, output, and error files. 
•  any stdout and stderr from the job. 

Alleviates the need for searching through large DAGMan and Condor 
logs! 
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Workflow Monitoring Dashboard: pegasus-dashboard 

§  A python based online workflow dashboard 
–  Uses the FLASK framework 
–  Beta version released in 4.2 
–  Queries the STAMPEDE database 

§  Lists all the user workflows on the home page and are color 
coded.  

–  Green indicates a successful workflow, 
–  Red indicates a failed workflow  
–  Blue indicates a running workflow 

§  Explore Workflow and Troubleshoot ( Workflow Page ) 
–  Has identifying metadata about the workflow 
–  Tabbed interface to  

•  List of sub workflows 
•  Failed jobs 
•  Running  jobs 
•  Successful jobs. 
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Workflow Monitoring Dashboard: pegasus-dashboard 

§  Job Page 
–  Lists information captured in kickstart record for the job. 
–  Will show the various retries of the job 

§  Statistics Page for the Workflow 
–  Generates Statistics for the workflow, similar to pegasus-statistics  

command line tool 

§  Charts Page For the Workflow 
–  Workflow Gantt Chart 
–  Job Distribution by Count/Time 
–  Time Chart by Job/Invocation 
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Workflow Monitoring Dashboard – pegasus-dashboard 

Hosts Over Time – Distribution 
of Different Job Types on Hosts 

Jobs and Runtime over Time 

Workflow Gantt Chart 
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Workflow and Task Notifications 

§  Users want to be notified at certain points in the workflow 
or on certain events. 

§  Support for adding notification to workflow and tasks 
 

§  Event based callouts  
–  On Start, On End, On Failure, On Success 
–  Provided with email and jabber notification scripts 
–  Can run any user provided scripts 
–  Defined in the DAX 
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Summary –  
What Does Pegasus provide an Application - I 

§  All the great features that DAGMan has 
–  Scalability / hierarchal workflows 
–  Retries in case of failure. 

§  Portability / Reuse 
–  User created workflows can easily be mapped to and run in 

different environments without alteration.  
 

§  Performance 
–  The Pegasus mapper can reorder, group, and prioritize tasks in 

order to increase the overall workflow performance. 
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Summary –  
What Does Pegasus provide an Application - II 

§  Provenance 
–  Provenance data is collected in a database, and the data can be 

summaries with tools such as pegasus-statistics, pegasus-plots, or 
directly with SQL queries. 
 

§  Reliability and Debugging Tools 
–  Jobs and data transfers are automatically retried in case of failures. 

Debugging tools such as pegasus-analyzer helps the user to debug 
the workflow in case of non-recoverable failures. 
 

§  Data Management 
–  Pegasus handles replica selection, data transfers and output 

registrations in data catalogs. These tasks are added to a workflow 
as auxiliary jobs by the Pegasus planner. 
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Relevant Links 

§  Pegasus: http://pegasus.isi.edu 

§  Tutorial and documentation: 
http://pegasus.isi.edu/wms/docs/latest/ 

§  Support: pegasus-users@isi.edu                 
               pegasus-support@isi.edu  
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