
Scientific Workflows with Pegasus

Karan	 Vahi	
	

Science	 Automa1on	 Technologies	 Group	
USC	 Informa1on	 Sciences	 Ins1tute	

2

Workloads – Simple Workflows.

J3J1 J2 J4 J5 J9J8J6 J7 Jn

3

Workloads or Workflows: Users have same concerns!

§  Data Management!
–  How do you ship in the small/large amounts data required by the workflows?"
–  Can I use SRM? How about GridFTP? HTTP and Squid proxies?"
–  Can I use Cloud based storage like S3 on EC2?"
!

§  Debug and Monitor Workflows!
–  Users need automated tools to go through the log files"
–  Need to correlate data across lots of log files"
–  Need to know what host a job ran on and how it was invoked"
!

§  Restructure Workflows for Improved Performance!
–  Short running tasks?"
–  Data placement?  

"
§  Integrate with higher level tools such as HubZero and

provisioning infrastructure!
–  such as GlideinWMS, BOSCO"

4

Pegasus Workflow Management System

§  NSF funded project since 2001
–  Developed as a collaboration between USC Information Sciences Institute and

the Condor Team at UW Madison

§  Builds on top of Condor DAGMan.

§  Abstract Workflows - Pegasus input workflow description
–  Workflow “high-level language”
–  Only identifies the computation, devoid of resource descriptions, devoid of data

locations
–  File Aware

§  Pegasus is a workflow “compiler” (plan/map)
–  Target is DAGMan DAGs and Condor submit files
–  Transforms the workflow for performance and reliability
–  Automatically locates physical locations for both workflow

components and data
–  Collects runtime provenance

B B

D

A

B B

C C C C

5

Pegasus WMS

API Interfaces

Portals

Other Workflow
Composition

Tools: Grayson,
Triana, Wings

Pegasus WMS

Mapper

Engine

Scheduler

Users

Distributed Resources
Campus Clusters, Local Clusters, Open Science Grid, XSEDE

GRAM
P
B
S

LSF SGE

C
O
N
D
O
R

STORAGECOMPUTEMIDDLEWARE

Cloudware
OpenStack

 Eucalyptus, Nimbus

GridFTP

HTTP

FTP

SRM

IRODS

Storage

SCP

Compute
 Amazon EC2, RackSpace,

FutureGrid

Workflow
DB

Monitoring

Logs

Notifications

S3

Clouds

6

Abstract to Executable Workflow Mapping

§  Abstraction provides
–  Ease of Use (do not need to

worry about low-level
execution details)

–  Portability (can use the same
workflow description to run on
a number of resources and/or
across them)

–  Gives opportunities for
optimization and fault
tolerance

•  automatically restructure
the workflow

•  automatically provide
fault recovery (retry,
choose different
resource)

General Workflow Execution Model

•  Input	 Data	 Site,	 Compute	 Site	 and	 Output	 Data	 Sites	 can	 be	 co-‐located	
–  Example:	 Input	 data	 is	 already	 present	 on	 the	 compute	 site.	

•  Most	 of	 the	 tasks	 in	
scien1fic	 workflow	
applica1ons	 require	
POSIX	 file	 seman1cs	

–  Each	 task	 in	 the	
workflow	 opens	 one	 or	
more	 input	 files	

–  Read	 or	 write	 a	 por1on	
of	 it	 and	 then	 close	 the	
file.	

8

Supported Data Staging Approaches - I

§  Worker nodes and the head node have
a shared filesystem, usually a parallel
filesystem with great I/O characteristics"

§  Can leverage symlinking against
existing datasets"

§  Staging site is the shared-fs."

Submit
Host

Compute Site

Shared
FS

WN

WN

HPC Cluster

Shared Filesystem setup (typical of XSEDE and HPC sites)!

Non-shared filesystem setup with staging site (typical of OSG and EC 2)!

§  Worker nodes don’t share a filesystem."
§  Data is pulled from / pushed to the

existing storage element."
§  A separate staging site such as S3." Compute Site

Submit
Host

Staging
Site

WN

WN
Amazon

EC2 with S3
Jobs
Data

9

Supported Data Staging Approaches - II

§  Worker nodes don’t share a filesystem"
§  Symlink against datasets available locally"
§  Data is pulled from / pushed to the

submit host via Condor file transfers"
§  Staging site is the submit host."

Using Pegasus allows you to move from one
deployment to another without changing the
workflow description!

Condor IO (Typical of large Condor Pools like CHTC)!

Supported Transfer Protocols!

§  HTTP"
§  SCP"
§  GridFTP"
§  IRODS"
§  S3"
§  Condor File IO"
§  File Copy"

Submit
Host

Local FS

Compute Site

WN WN
Jobs
Data

10

Workflow Reduction (Data Reuse)

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.
Reuse it.
Mark Jobs D and B to delete

Delete Job D and Job B

Useful when you have done a part of computation and then realize the
need to change the structure. Re-plan instead of submitting rescue DAG!

11

File cleanup

§  Problem: Running out of disk space during workflow execution

§  Why does it occur
–  Workflows could bring in huge amounts of data
–  Data is generated during workflow execution
–  Users don’t worry about cleaning up after they are done

§  Solution

–  Do cleanup after workflows finish
•  Add a leaf Cleanup Job (Available in 4.4 Release)

–  Interleave cleanup automatically during workflow execution.
•  Requires an analysis of the workflow to determine, when a file is no

longer required

–  Cluster the cleanup jobs by level for large workflows

Real Life Example: Used by a UCLA genomics researcher to delete TB’s
of data automatically for long running workflows!!

12

File cleanup (cont)

Montage 1 degree workflow run with cleanup

13

Workflow Restructuring to improve application performance

§  Cluster small running jobs together to achieve better
performance

§  Why?
–  Each job has scheduling overhead – need to make this overhead

worthwhile
–  Ideally users should run a job on the grid that takes at least 10/30/60/?

minutes to execute
–  Clustered tasks can reuse common input data – less data transfers

Level-based clustering
B

C

B

C

B

C

B

C

A

D

B

C

B

C

B

C

B

C

A

D

14

Workflow Monitoring - Stampede

§  Leverage Stampede Monitoring framework with DB backend!
–  Populates data at runtime. A background daemon monitors the logs files and

populates information about the workflow to a database"
–  Stores workflow structure, and runtime stats for each task."
!

§  Tools for querying the monitoring framework!
–  pegasus-status!

•  Status of the workflow"
–  pegasus-statistics!

•  Detailed statistics about your finished workflow"

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002
Jobs 4529 0 0 4529 0 4529
Sub-Workflows 2 0 0 2 0 2
--

Workflow wall time : 13 hrs, 2 mins, (46973 secs)
Workflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

15

Workflow Debugging Through Pegasus

§  After a workflow has completed, we can run pegasus-
analyzer to analyze the workflow and provide a summary
of the run

§  pegasus-analyzer's output contains
–  a brief summary section

•  showing how many jobs have succeeded
•  and how many have failed.

–  For each failed job
•  showing its last known state
•  exitcode
•  working directory
•  the location of its submit, output, and error files.
•  any stdout and stderr from the job.

Alleviates the need for searching through large DAGMan and Condor
logs!

16

Workflow Monitoring Dashboard: pegasus-dashboard

§  A python based online workflow dashboard
–  Uses the FLASK framework
–  Beta version released in 4.2
–  Queries the STAMPEDE database

§  Lists all the user workflows on the home page and are color
coded.

–  Green indicates a successful workflow,
–  Red indicates a failed workflow
–  Blue indicates a running workflow

§  Explore Workflow and Troubleshoot (Workflow Page)
–  Has identifying metadata about the workflow
–  Tabbed interface to

•  List of sub workflows
•  Failed jobs
•  Running jobs
•  Successful jobs.

17

Workflow Monitoring Dashboard: pegasus-dashboard

§  Job Page
–  Lists information captured in kickstart record for the job.
–  Will show the various retries of the job

§  Statistics Page for the Workflow
–  Generates Statistics for the workflow, similar to pegasus-statistics

command line tool

§  Charts Page For the Workflow
–  Workflow Gantt Chart
–  Job Distribution by Count/Time
–  Time Chart by Job/Invocation

18

Workflow Monitoring Dashboard – pegasus-dashboard

Hosts Over Time – Distribution
of Different Job Types on Hosts

Jobs and Runtime over Time

Workflow Gantt Chart

19

Workflow and Task Notifications

§  Users want to be notified at certain points in the workflow
or on certain events.

§  Support for adding notification to workflow and tasks

§  Event based callouts
–  On Start, On End, On Failure, On Success
–  Provided with email and jabber notification scripts
–  Can run any user provided scripts
–  Defined in the DAX

20

Metrics Collection

§  Why?
–  A requirement of being funded as part of the NSF SI2 Program
–  Reporting ON by default. Can be turned off.

§  What do we collect?
–  Anonymous planner metrics

•  Duration of the planner
•  Start and end time
•  Exitcode
•  Breakdown of tasks and jobs in the workflow

–  We leave a copy of the metrics file in the submit directory for the users

§  Capturing Errors
–  In addition to capturing usage data, the planner also reports back fatal

errors
–  Using it to drive usability improvements for Pegasus

§  http://pegasus.isi.edu/wms/docs/latest/funding_citing_usage.php#usage_statistics

22

Summary –
What Does Pegasus provide an Application - I

§  All the great features that DAGMan has
–  Scalability / hierarchal workflows
–  Retries in case of failure.

§  Portability / Reuse
–  User created workflows can easily be mapped to and run in

different environments without alteration.

§  Performance
–  The Pegasus mapper can reorder, group, and prioritize tasks in

order to increase the overall workflow performance.

23

Summary –
What Does Pegasus provide an Application - II

§  Provenance
–  Provenance data is collected in a database, and the data can be

summaries with tools such as pegasus-statistics, pegasus-plots, or
directly with SQL queries.

§  Reliability and Debugging Tools
–  Jobs and data transfers are automatically retried in case of failures.

Debugging tools such as pegasus-analyzer helps the user to debug
the workflow in case of non-recoverable failures.

§  Data Management
–  Pegasus handles replica selection, data transfers and output

registrations in data catalogs. These tasks are added to a workflow
as auxiliary jobs by the Pegasus planner.

24

Relevant Links

§  Pegasus: http://pegasus.isi.edu

§  Tutorial and documentation:
http://pegasus.isi.edu/wms/docs/latest/

§  Support: pegasus-users@isi.edu
 pegasus-support@isi.edu

Acknowledgements
Pegasus Team, Condor Team, funding agencies, NSF,
NIH, and everybody who uses Pegasus.

