

# **Scientific Workflows with Pegasus**

Karan Vahi

Science Automation Technologies Group USC Information Sciences Institute



Information Sciences Institute

### Workloads – Simple Workflows.







### Workloads or Workflows: Users have same concerns!

#### Data Management

- How do you ship in the small/large amounts data required by the workflows?
- Can I use SRM? How about GridFTP? HTTP and Squid proxies?
- Can I use Cloud based storage like S3 on EC2?

#### Debug and Monitor Workflows

- Users need automated tools to go through the log files
- Need to correlate data across lots of log files
- Need to know what host a job ran on and how it was invoked

#### Restructure Workflows for Improved Performance

- Short running tasks?
- Data placement?

# Integrate with higher level tools such as HubZero and provisioning infrastructure

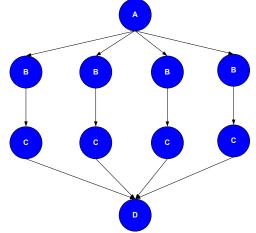
such as GlideinWMS, BOSCO





## **Pegasus Workflow Management System**

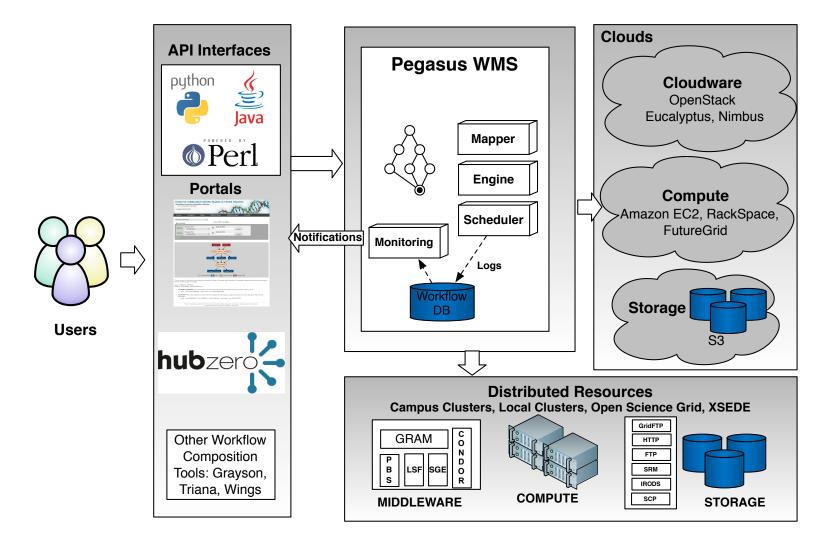
#### NSF funded project since 2001


- Developed as a collaboration between USC Information Sciences Institute and the Condor Team at UW Madison
- Builds on top of Condor DAGMan.

#### Abstract Workflows - Pegasus input workflow description

- Workflow "high-level language"
- Only identifies the computation, devoid of resource descriptions, devoid of data locations
- File Aware

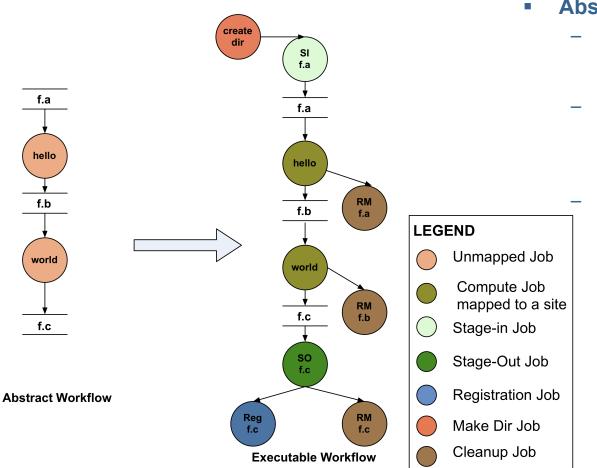
#### Pegasus is a workflow "compiler" (plan/map)


- Target is DAGMan DAGs and Condor submit files
- Transforms the workflow for performance and reliability
- Automatically locates physical locations for both workflow components and data
- Collects runtime provenance








### **Pegasus WMS**





## **Abstract to Executable Workflow Mapping**

6



School of Engineering

- Abstraction provides
  - Ease of Use (do not need to worry about low-level execution details)
  - Portability (can use the same workflow description to run on a number of resources and/or across them)
  - Gives opportunities for optimization and fault tolerance
    - automatically restructure the workflow
    - automatically provide fault recovery (retry, choose different resource)

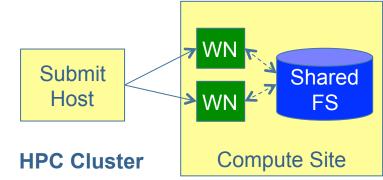


# **General Workflow Execution Model**



- Most of the tasks in scientific workflow applications require POSIX file semantics
  - Each task in the workflow opens one or more input files
  - Read or write a portion of it and then close the file.

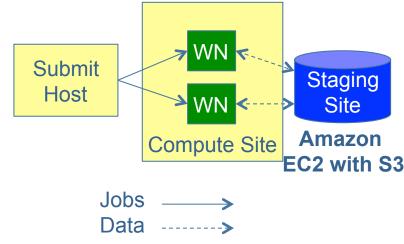
- Input Data Site, Compute Site and Output Data Sites can be co-located
  - Example: Input data is already present on the compute site.






# Supported Data Staging Approaches - I

### Shared Filesystem setup (typical of XSEDE and HPC sites)


- Worker nodes and the head node have a shared filesystem, usually a parallel filesystem with great I/O characteristics
- Can leverage symlinking against existing datasets
- Staging site is the shared-fs.



#### Non-shared filesystem setup with staging site (typical of OSG and EC 2)

- Worker nodes don't share a filesystem.
- Data is pulled from / pushed to the existing storage element.
- A separate staging site such as S3.

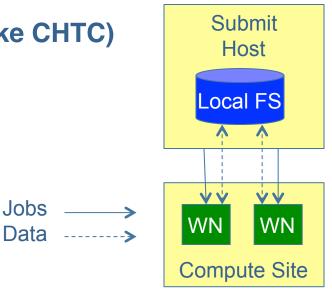
School of Engineering





# Supported Data Staging Approaches - II

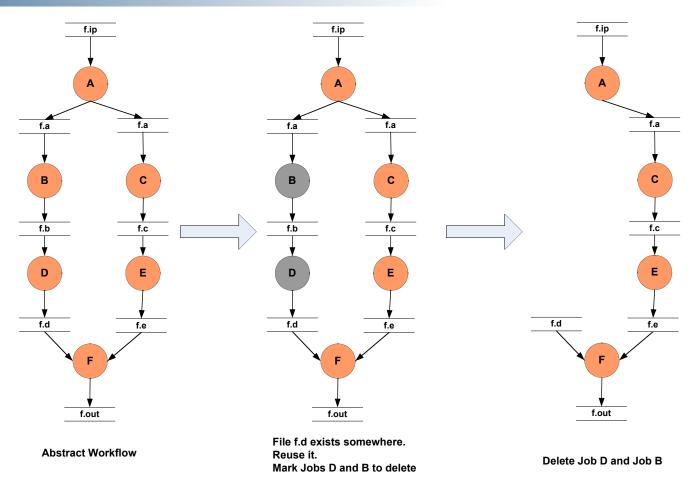
### Condor IO (Typical of large Condor Pools like CHTC)


- Worker nodes don't share a filesystem
- Symlink against datasets available locally
- Data is pulled from / pushed to the submit host via Condor file transfers
- Staging site is the submit host.

#### **Supported Transfer Protocols**

- HTTP
- SCP
- GridFTP
- IRODS
- S3
- Condor File IO

School of Engineering


File Copy



Using Pegasus allows you to move from one deployment to another without changing the workflow description!



### **Workflow Reduction (Data Reuse)**



# Useful when you have done a part of computation and then realize the need to change the structure. Re-plan instead of submitting rescue DAG!

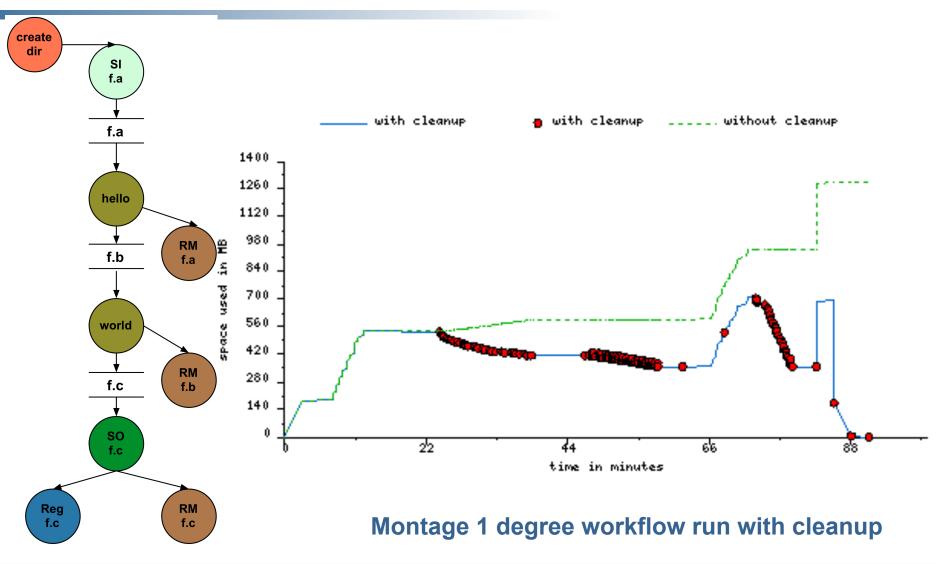


### File cleanup

Problem: Running out of disk space during workflow execution

#### Why does it occur

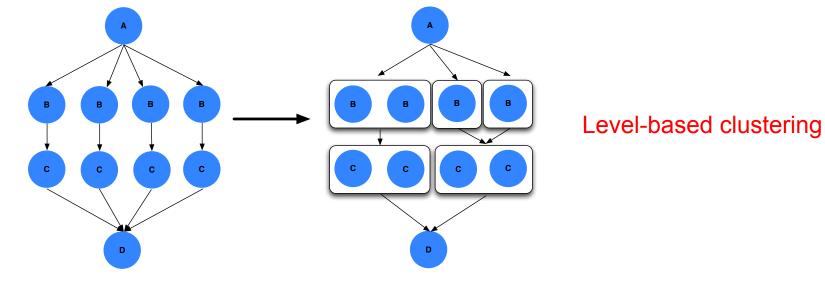
- Workflows could bring in huge amounts of data
- Data is generated during workflow execution
- Users don't worry about cleaning up after they are done


#### Solution

- Do cleanup after workflows finish
  - Add a leaf Cleanup Job (Available in 4.4 Release)
- Interleave cleanup automatically during workflow execution.
  - Requires an analysis of the workflow to determine, when a file is no longer required
- Cluster the cleanup jobs by level for large workflows

Real Life Example: Used by a UCLA genomics researcher to delete TB's of data automatically for long running workflows!!




### File cleanup (cont)





### **Workflow Restructuring to improve application performance**

- Cluster small running jobs together to achieve better performance
- Why?
  - Each job has scheduling overhead need to make this overhead worthwhile
  - Ideally users should run a job on the grid that takes at least 10/30/60/? minutes to execute
  - Clustered tasks can reuse common input data less data transfers





### **Workflow Monitoring - Stampede**

#### Leverage Stampede Monitoring framework with DB backend

- Populates data at runtime. A background daemon monitors the logs files and populates information about the workflow to a database
- Stores workflow structure, and runtime stats for each task.

#### Tools for querying the monitoring framework

pegasus-status

School of Engineering

- Status of the workflow
- pegasus-statistics
  - Detailed statistics about your finished workflow

| Туре          | Succeeded | Failed | Incomplete | Total  | Retries | Total+Retries |
|---------------|-----------|--------|------------|--------|---------|---------------|
| Tasks         | 135002    | 0      | 0          | 135002 | 0       | 135002        |
| Jobs          | 4529      | 0      | 0          | 4529   | 0       | 4529          |
| Sub-Workflows | 2         | 0      | 0          | 2      | 0       | 2             |

Workflow wall time: 13 hrs, 2 mins, (46973 secs)Workflow cumulative job wall time: 384 days, 5 hrs, (33195705 secs)Cumulative job walltime as seen from submit side: 384 days, 18 hrs, (33243709 secs)



### **Workflow Debugging Through Pegasus**

 After a workflow has completed, we can run pegasusanalyzer to analyze the workflow and provide a summary of the run

#### pegasus-analyzer's output contains

- a brief summary section
  - showing how many jobs have succeeded
  - and how many have failed.
- For each failed job
  - showing its last known state
  - exitcode
  - working directory
  - the location of its submit, output, and error files.
  - any stdout and stderr from the job.

#### Alleviates the need for searching through large DAGMan and Condor





### Workflow Monitoring Dashboard: pegasus-dashboard

### A python based online workflow dashboard

- Uses the FLASK framework
- Beta version released in 4.2
- Queries the STAMPEDE database
- Lists all the user workflows on the home page and are color coded.
  - Green indicates a successful workflow,
  - Red indicates a failed workflow
  - Blue indicates a running workflow

#### Explore Workflow and Troubleshoot (Workflow Page)

- Has identifying metadata about the workflow
- Tabbed interface to
  - List of sub workflows
  - Failed jobs
  - Running jobs
  - Successful jobs.





### Workflow Monitoring Dashboard: pegasus-dashboard

### Job Page

- Lists information captured in kickstart record for the job.
- Will show the various retries of the job

### Statistics Page for the Workflow

Generates Statistics for the workflow, similar to pegasus-statistics command line tool

### Charts Page For the Workflow

- Workflow Gantt Chart
- Job Distribution by Count/Time
- Time Chart by Job/Invocation



### Workflow Monitoring Dashboard – pegasus-dashboard





### **Workflow and Task Notifications**

- Users want to be notified at certain points in the workflow or on certain events.
- Support for adding notification to workflow and tasks

#### Event based callouts

- On Start, On End, On Failure, On Success
- Provided with email and jabber notification scripts
- Can run any user provided scripts
- Defined in the DAX





### **Metrics Collection**

- Why?
  - A requirement of being funded as part of the NSF SI2 Program
  - Reporting ON by default. Can be turned off.

#### What do we collect?

- Anonymous planner metrics
  - Duration of the planner
  - · Start and end time
  - Exitcode
  - Breakdown of tasks and jobs in the workflow
- We leave a copy of the metrics file in the submit directory for the users

#### Capturing Errors

- In addition to capturing usage data, the planner also reports back fatal errors
- Using it to drive usability improvements for Pegasus
- http://pegasus.isi.edu/wms/docs/latest/funding\_citing\_usage.php#usage\_statistics



Show results for the last year + Update

Showing 2013-04-25 14:19:58 to 2014-04-25 14:19:58

#### **Metametrics**

| Number of raw objects       | 231,761 |
|-----------------------------|---------|
| Number of invalid objects   | 8       |
| Number of processed objects | 231,753 |

#### **Planner Metrics**

| Workflows Planned | 224,279       |
|-------------------|---------------|
| Tasks Planned     | 1,321,249,267 |
| Jobs Planned      | 62,510,152    |
| Errors Reported   | 4,551         |

#### **Top Planner Domains**

| Domain                          | Workflows | Tasks       | Jobs       |
|---------------------------------|-----------|-------------|------------|
| us-west-2.compute.amazonaws.com | 37,288    | 36,023,295  | 3,868,573  |
| isi.edu                         | 37,238    | 184,951,338 | 16,841,265 |
| mps.mpg.de                      | 36,106    | 1,012,466   | 1,290,070  |
| grid.iu.edu                     | 27,464    | 500,294,080 | 14,859,482 |
| usc.edu                         | 27,075    | 552,593,558 | 6,153,451  |

#### **Top Planner Hosts**

| Host                  | Workflows | Tasks       | Jobs       |  |
|-----------------------|-----------|-------------|------------|--|
| cartman.isi.edu       | 30,461    | 181,965,576 | 13,736,116 |  |
| osg-xsede.grid.iu.edu | 27,464    | 500,294,080 | 14,859,482 |  |
| shock.usc.edu         | 26,979    | 552,502,104 | 6,109,904  |  |
| condor.nanohub.org    | 23,554    | 48,926      | 146,562    |  |
| seismo3.mps.mpg.de    | 23,080    | 666,402     | 844,427    |  |

#### **Download Metrics**

Number of downloads

1,009





### Summary – What Does Pegasus provide an Application - I

### • All the great features that DAGMan has

- Scalability / hierarchal workflows
- Retries in case of failure.

### Portability / Reuse

 User created workflows can easily be mapped to and run in different environments without alteration.

### Performance

 The Pegasus mapper can reorder, group, and prioritize tasks in order to increase the overall workflow performance.





### Summary – What Does Pegasus provide an Application - II

#### Provenance

 Provenance data is collected in a database, and the data can be summaries with tools such as pegasus-statistics, pegasus-plots, or directly with SQL queries.

### Reliability and Debugging Tools

 Jobs and data transfers are automatically retried in case of failures.
Debugging tools such as pegasus-analyzer helps the user to debug the workflow in case of non-recoverable failures.

### Data Management

 Pegasus handles replica selection, data transfers and output registrations in data catalogs. These tasks are added to a workflow as auxiliary jobs by the Pegasus planner.





Pegasus: <u>http://pegasus.isi.edu</u>

 Tutorial and documentation: <u>http://pegasus.isi.edu/wms/docs/latest/</u>

 Support: <u>pegasus-users@isi.edu</u> <u>pegasus-support@isi.edu</u>

Acknowledgements Pegasus Team, Condor Team, funding agencies, NSF, NIH, and everybody who uses Pegasus.



