
Science Automation with the Pegasus
Workflow Management System

Ewa	 Deelman	
	

USC	 Informa1on	 Sciences	 Ins1tute	

h8p://www.isi.edu/~deelman	

Funding	 from	 DOE,	 NSF,	 and	 NIH	
	

The Problem

§  Scientific data is being collected at an ever increasing
rate
–  The “old days” -- big, focused experiments– LHC
–  Today also “cheap” DNA sequencers – and an increasing

number of them
§  The complexity of the computational problems is ever

increasing
§  Local compute resources are often not enough

–  Too small, limited availability
–  Data sets are distributed

§  The computing infrastructure keeps changing
–  Hardware, software, but also computational models

Our approach

§  Provide a way to structure applications in such a way that
enables them to be automatically managed
–  In a portable way: same description that works on different

resources
–  In a way that scientists can interpret the results

§  Develop a system that
–  Maps the application description onto the available

resources
–  Manages its execution on heterogeneous resources
–  Sends results back to the user or archive
–  Provides good performance, reliability, scalability

Outline

§  Scientific Workflows and Application Examples
§  Managing scientific workflows
§  Pegasus and its features
§  Conclusions

Scientific Workflows

§  Structure an overall computation
§  Define the computation steps and their

parameters

§  Define the input/output data, parameters

§  Invoke the overall computation
§  Reuse with other data/parameters/

algorithms and share

§  Workflows can be hidden behind a nice
user interface (e.g. portal)

Science-grade Mosaic of the Sky

Science-grade Mosaic of the Sky

Montage Workflow

Reprojection Background Rectification Co-addition Output Input

BgModel

Project

Project

Project

Diff

Diff

Fitplane

Fitplane

Background

Background

Background

Add

Image1

Image2

Image3

Size of mosaic
in degrees

square
Number of

input data files
Number of

tasks

Number of
intermediate

files
Total data
footprint

Cummulative
wall time

1 84 387 770 1.8 GB 11 mins
2 300 1442 2880 6.4 GB 43 mins

4 685 3738 7466 17 GB 1 hour, 56 mins

6 1461 7462 14904 35 GB
3 hours, 42

mins

8 2565 12757 25480 59 GB
6 hours, 45

mins

Amazon M1 large with 2 cores

Some workflows are large-scale
and data-intensive

§  Montage Galactic Plane Workflow
–  18 million input images (~2.5 TB)
–  900 output images (2.5 GB each, 2.4 TB total)
–  10.5 million tasks (34,000 CPU hours)

§ Need to support hierarchical workflows and scale

John Good (Caltech)

Data Management
Workflow

Outline

§  Scientific Workflows and Application Examples
§  Managing scientific workflows
§  Pegasus and its features

§  Conclusions

Specification: Place Y = F(x) at L

§  Find where x is--- {S1,S2, …}
§  Find where F can be computed--- {C1,C2, …}
§  Choose c and s subject to constraints (performance,

space availability,….)
§  Move x from s to c

–  Move F to c
§  Compute F(x) at c

§  Move Y from c to L
§  Register Y in data registry
§  Record provenance of Y, performance of F(x) at c

Error! c crashed!

Error! x was not at s!

Error! F(x) failed!

Error! there is not enough space at L!

Some workflows
are structurally
complex

Genomics Workflow

Gravitational-wave physics

Workflows can be simple!

J3J1 J2 J4 J5 J9J8J6 J7 Jn

Sometimes you want to “hide” the workflow

Integration
with HUBzero

Credit: Frank McKenna
 UC Berkeley, NEES, HUBzero

Sometimes the environment is complex

Data	
Storage	 	

Campus Cluster

XSEDE

NERSC

ALCF

OLCF

Open Science Grid

FutureGrid

Amazon Cloud

Work definition

Local Resource

Sometimes the environment is just not exactly
right
Single core workload

Cray XT System Environment /
ALPS / aprun

•  Designed for MPI codes

Sometime you want to change or combine resources

Data	
Storage	 	

Local Resource

work

data Campus Cluster

XSEDE

NERSC

ALCF

OLCF

Open Science Grid

FutureGrid

Amazon Cloud

You don’t want to recode your workflow

Workflow Management

§  Assume a high-level workflow specification
§  Assume the potential use of different resources within a

workflow or over time
•  Need a planning capability to map from high-level to

executable workflow
•  Need to manage the task dependencies
•  Need to manage the execution of tasks on the remote

resources
•  Need to provide provenance information
•  Need to provide scalability, performance, reliability

Outline

§  Scientific Workflows and Application Examples
§  Managing scientific workflows
§  Pegasus and its features
§  Conclusions

Our Approach
l  Analysis Representation

l  Support a declarative representation for the workflow (dataflow)
l  Represent the workflow structure as a Directed Acyclic Graph

(DAG)
l  Tasks operate on files
l  Use recursion to achieve scalability

l  System (Plan for the resources, Execute the Plan,
Manage tasks)
l  Layered architecture, each layer is responsible for a particular

function
l  Mask errors at different levels of the system
l  Modular, composed of well-defined components, where different

components can be swapped in
l  Use and adapt existing graph and other relevant algorithms

Submit locally, compute Globally

Data	
Storage	 	

Work definition

Local Resource

Workflow
Management
System

work

data Campus Cluster

XSEDE

NERSC

ALCF

OLCF

Open Science Grid

FutureGrid

Amazon Cloud

Pegasus
Workflow Management System (est. 2001)

§  A collaboration between USC and the Condor Team at UW
Madison

§  Maps a resource-independent “abstract” workflow onto resources
and executes the “concrete” workflow

§  Used by a number of applications in a variety of domains

§  Provides reliability—can retry computations from the point of
failure

§  Provides scalability—can handle large data and many
computations (kbytes-TB of data, 1-106 tasks)

§  Infers data transfers, restructures workflows for performance

§  Automatically captures provenance information

§  Can run on resources distributed among institutions, laptop,
campus cluster, Grid (OSG, XSEDE), Cloud (Amazon, FutureGrid)

Pegasus Workflow Management System
§  A workflow “compiler”

§  Input: abstract workflow description, resource-independent
§  Auxiliary Info (catalogs): available resources, data, codes
§  Output: executable workflow with concrete resources
§  Automatically locates physical locations for both workflow

tasks and data
§  Transforms the workflow for performance and reliability

§  A workflow engine (DAGMan)
§  Executes the workflow on local or distributed resources

(HPC, clouds)
§  Task executables are wrapped with pegasus-kickstart and

managed by Condor schedd
§  Provenance and execution traces are collected and stored
§  Traces and DB can be mined for performance and overhead

information

Ewa Deelman, deelman@isi.edu

 www.isi.edu/~deelman
 http://pegasus.isi.edu

Submit host

Generating executable workflows

25

(DAX)

APIs for
workflow
specification
(DAX---
DAG in XML)

Java, Perl, Python

How do workflows start?

26

Time to solution ~ 2 weeks-3 months

Execution on USC resources

Pegasus optimizations address issues of:

§  Failures in the execution environment or application
§  Data storage limitations on execution sites
§  Performance

–  Small workflow tasks

§  Heterogeneous execution architectures
–  Different file systems (shared/non-shared)
–  Different system architectures (Cray XT, Blue Gene, …)

Sometimes fatal errors occur during workflow
execution

Want to restart the workflow from where it left off
Sometimes intermediate data is already available

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.
Reuse it.
Mark Jobs D and B to delete

Delete Job D and Job B

Workflow
Reduction

Data Reuse

Workflow-level
checkpointing

Storage limitations
“Small” amount of space

Automatically
add tasks to
“clean up”
data no
longer
needed

LIGO and Montage

1.25GB versus 4.5 GB

LIGO Workflows

Need additional
restructuring

26%
improvement

56%
improvement

Full workflow:
185,000 nodes
466,000 edges
10 TB of input data
1 TB of output data.

166 nodes

Storage limitations
Variety of file system deployments:
shared vs non-shared

User
workflow

Workflow Restructuring to improve application performance

§  Cluster small running jobs together to achieve better
performance

§  Why?
–  Each job has scheduling overhead – submit host
–  Ideally users should run a job on the grid/cloud that takes at least

10/30/60/? minutes to execute
–  Clustered tasks can reuse common input data – less data transfers

Level-based clustering
Label-based clustering
Time-based clustering

B

C

B

C

B

C

B

C

A

D

B

C

B

C

B

C

B

C

A

D

CyberShake PSHA
Workflow

239 Workflows

§  Each site in the input map
corresponds to one workflow

§  Each workflow has:

²  820,000 tasks

v  Description
²  Builders ask seismologists: “What will the peak

ground motion be at my new building in the next
50 years?”

²  Seismologists answer this question using
Probabilistic Seismic Hazard Analysis (PSHA)

Southern California Earthquake Center

Workflows have different computational needs

MPI codes ~ 12,000 CPU hours,
Post Processing 2,000 CPU hours
Data footprint ~ 800GB

SoCal Map
needs 239 of
those

Solutions

Cluster tasks

Develop an MPI-based workflow
management engine to manage
sub-workflows

B

C

B

C

B

C

B

C

A

D

B

C

B

C

B

C

B

C

A

D

Pilot	 Job	

time

tasks
Use “pilot” jobs to dynamically
provision a number of resources at
a time

Pegasus-MPI-Cluster

§  A master/worker task scheduler for running fine-grained
workflows on batch systems

§  Runs as an MPI job
–  Uses MPI to implement master/worker protocol

§  Works on most HPC systems
–  Requires: MPI, a shared file system, and fork()

§  Allows sub-graphs of a Pegasus workflow to be
submitted as monolithic grid jobs to remote resources

39

Enables earthquake scientists (SCEC) to
run post-processing (single core)
computations on new architectures
(Titan)

Workflow Monitoring - Stampede

§  Leverage Stampede Monitoring framework with DB backend
–  Populates data at runtime. A background daemon monitors the logs files and

populates information about the workflow to a database
–  Stores workflow structure, and runtime stats for each task.

§  Tools for querying the monitoring framework
–  pegasus-status

•  Status of the workflow
–  pegasus-statistics

•  Detailed statistics about your finished workflow
--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002
Jobs 4529 0 0 4529 0 4529
Sub-Workflows 2 0 0 2 0 2
--

Workflow wall time : 13 hrs, 2 mins, (46973 secs)
Workflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

Collaboration with Dan Gunter and Taghrid Samak, LBNL

Typical Deployment

Tasks access data via Posix I/O

Posix Access for Tasks in the workflow

•  How	 do	 you	 ensure	 Posix	 access	 for	 the	 tasks?	
–  Place	 it	 on	 a	 shared	 filesystem	 shared	 across	 nodes.	

–  Place	 it	 directly	 on	 local	 filesystem	 of	 the	 worker	 node	 from	 the	 input	 site.	

•  Direct	 Transfers	 to	 local	 filesystem	
–  Job	 starts	 and	 retrieves	 input	 data	 from	 input	 site.	

–  Not	 efficient	 for	 large	 datasets	 that	 are	 shared	 across	 jobs.	

•  Shared	 Filesystem	 sounds	 appealing	 but	 problems	 for	 Big	 Data	
workflows	
–  Shared	 storage	 at	 a	 computa1onal	 site	 maybe	 limited.	 Cannot	 accommodate	

all	 files	 required	 for	 a	 large	 workflow.	

–  In	 some	 cases,	 shared	 filesystem	 may	 have	 limited	 scalability-‐-‐-‐NFS	

–  Harder	 to	 setup	 a	 shared	 filesystem	 in	 a	 dynamic	 environment	 like	
computa1onal	 clouds	

–  Some	 systems	 just	 don’t	 support	 it	

Object Storage for Workflows

•  Clouds	 such	 as	 Amazon	 provide	 object	 stores-‐-‐-‐	 S3	
•  Object	 Store:	 high	 level	 storage	 service	 with	 limited	 opera1ons	

–  Store,	 retrieve	 and	 delete	 data	 objects	 (files)	
–  Doesn’t	 provide	 byte	 level	 access	

•  Cannot	 open	 a	 file	 in	 an	 object	 store,	 read	 and	 update	 	 it	 and	 then	 close	 it.	
•  Instead	 a	 client	 needs	 to	 download	 the	 file,	 update	 it	 and	 then	 store	 as	 a	 new	
object.	

•  View	 tradi1onal	 Grid	 services	 like	 GridFTP,	 SRM,	 IRODS	 as	 object	
stores	
–  Store,	 retrieve	 and	 delete	 data	 (files)	
–  Don’t	 support	 random	 read	 or	 writes	 like	 object	 stores.	

–  This	 generaliza1on	 is	 important	 to	 lay	 out	 the	 different	 data	 management	
models.	

	 43

General Workflow Execution Model, Cannot
Assume Shared FS

•  Input	 Data	 Site,	 Compute	 Site	 and	 Output	 Data	 Sites	 can	 be	 co-‐located	
–  Example:	 Input	 data	 is	 already	 present	 on	 the	 compute	 site.	

Exclusive Use of Object Stores

The	 Workflow	 System	 retrieves	 files	 from	 Object	 Store	 and	 makes	 it	 available	 to	 the	
workflow	 task	 on	 the	 local	 disk	 on	 a	 worker	 node.	

Advantages	
–  Can	 leverage	 scalable	

stores	
–  Distribute	 computa1ons	

across	 resources,	 such	 as	
suppor1ng	 spillover	 from	
local	 resources	 to	 cloud	
resources.	

–  Great	 bandwidth	

	

Disadvantages	
–  Duplicate	 Transfers	

–  Latencies	 in	 transferring	
large	 number	 of	 files	

–  Added	 costs	 for	
duplicate	 transfers.	

	

Pegasus-kickstart

§  Lightweight C based executable to launch jobs
§  Captures job runtime provenance and logs it as a XML record
§  Following information is captured about each job on all

supported platforms
–  exit code with which the job it launched exited
–  start time and duration of the job
–  hostname and IP address of the host the job ran on
–  stdout and stderr of the job
–  arguments with which it launched the job
–  directory in which the job was launched
–  environment that was set for the job before it was launched

§  Additional profiling
–  peak memory usage (resident set size, and vm size)
–  total I/O read and write,
–  Pid
–  all files accessed (total read and write per file)

Workflow Monitoring Dashboard – pegasus-dashboard

Status, statistics, timeline of jobs

Helps pinpoint errors

Tools to calculate job statistics

Task	 Type	 Count	 Run/me(s)	 IO	 Read	
(MB)	

IO	 Write	
(MB)	

Memory	
Peak(MB)	

CPU	
U/liza/on(%)	

mProjectPP	 2102	 1.73	 2.05	 8.09	 11.81	 86.96	

mDiffFit	 6172	 0.66	 16.56	 0.64	 5.76	 28.39	

mConcatFit	 1	 143.26	 1.95	 1.22	 8.13	 53.17	

mBgModel	 1	 384.49	 1.56	 0.10	 13.64	 99.89	

mBackground	 2102	 1.72	 8.36	 8.09	 16.19	 8.46	

mImgtbl	 17	 2.78	 1.55	 0.12	 8.06	 3.48	

mAdd	 17	 282.37	 1102	 775.45	 16.04	 8.48	

mShrink	 16	 66.10	 412	 0.49	 4.62	 2.30	

mJPEG	 1	 0.64	 25.33	 0.39	 3.96	 77.14	

Table 1. Execution profile of the Montage workflow, averages calculated

dv/dt – Accelerating the rate of progress towards
extreme scale collaborative science, (9/12-8/15, DOE)

Objec/ves	

§  Design	 a	 computa/onal	 framework	 that	 enables	 computa/onal	
experimenta/on	 at	 scale	 while	 suppor/ng	 the	 model	 of	 “submit	 locally,	
compute	 globally”	

§  Focus	 on	 Es/ma/ng	 applica/on	 resource	 needs,	 Finding	 the	 appropriate	
compu/ng	 resources,	 Acquiring	 those	 resources,	 Deploying	 the	
applica/ons	 and	 data	 on	 the	 resources,	 Managing	 applica/ons	 and	
resources	 during	 run	

§  Task	 resource	 profiling	 and	 resource	 es/ma/on	
Job completion time rate

Colors represent different job status

Miron Livny UWMadison, Bill Allcock ANL, Ewa Deelman USC,
Doug Thain UND, Frank Wuerthwein UCSD)

CMS factory
1 month of data

Task Characterization/Execution

§  Collect and archive data from existing infrastructure
deployments

§  Understand the resource needs of a task (memory, disk,
CPU)

§  Establish expected values and limits for task resource
consumption

§  Launch tasks on the correct resources
§  Monitor task execution and resource consumption,

interrupt tasks that reach resource limits
§  Possibly re-launch tasks on different resources
§  Task characterization needs to be an online process

Predictive Modeling and Diagnostic Monitoring of
Extreme Science Workflow (9/14-8/17, DOE)

Objective: Understand complex scientific workflow applications and
infrastructure behaviors and to translate this understanding into flexible, end-
to-end analytical models that can effectively predict the behavior of extreme
scale workflows on current and future infrastructures
Approach:
§  Engage DOE science teams from simulation (e.g., Earth Systems Modeling

(ESM) and instrument facilities (e.g., Spallation Neutron Source(SNS) to
create example workflow scenarios

§  Develop a general analytical modeling methodology that captures the end-
to-end performance of these workflow scenarios using a structured
modeling approach

§  Validate the analytical models using empirical measurement and
simulation

§  Employ the analytical performance models to facilitate prototype
capabilities that include anomaly detection and diagnosis, resource
management and adaptation, and infrastructure design and planning

Ewa Deelman USC, Chris Carothers RPI, Anirban Mandal RENCI
Brian Tierney LBNL, Jeff Vetter ORNL

Benefits of Pegasus

§  Provides Support for Complex Computations
–  Can be hidden behind a portal

§  Portability / Reuse
–  User created workflows can easily be run in different

environments without alteration (XSEDE, OSG, FutureGrid,
Amazon)

§  Performance
–  The Pegasus mapper can reorder, group, and prioritize

tasks in order to increase the overall workflow performance

§  Scalability
–  Pegasus can easily scale both the size of the workflow, and

the resources that the workflow is distributed over.

Benefits of Pegasus

§  Provenance
–  Performance and provenance data is collected in a

database, and the data can be summaries with tools such as
pegasus-statistics, pegasus-plots, or directly with SQL
queries.

§  Reliability
–  Jobs and data transfers are automatically retried in case of

failures. Debugging tools such as pegasus-analyzer helps
the user to debug the workflow in case of non-recoverable
failures.

§  Analysis tools

53

If you are interested in Pegasus

§  Pegasus: http://pegasus.isi.edu

§  Tutorial and documentation:
http://pegasus.isi.edu/wms/docs/latest/

§  Virtual Machine with all software and examples
http://pegasus.isi.edu/downloads

§  Take look at some Pegasus applications:
 http://pegasus.isi.edu/applications

§  Support: pegasus-users@isi.edu

pegasus-support@isi.edu

