
Tricks of the Trade for Running
Workflows on HPC Systems

Gideon	
 Juve	

Informa(on	
 Sciences	
 Ins(tute	

University	
 of	
 Southern	
 California	

gideon@isi.edu	
 	

	

2

Scientific Workflows

§  Enable automation of complex, multi-step
pipelines

§  Provide reliable execution on unreliable
infrastructure

§  Support reproducibility of computations

§  Can be shared and reused with other data/
parameters/algorithms

§  Enable recording of data provenance

§  Support distributed, parallel execution to reduce
time to solution

Science-grade Mosaic of the Sky

Science-grade Mosaic of the Sky

Montage Workflow

Re-projection Background Rectification Co-addition Output Input

BgModel

Project

Project

Project

Diff

Diff

Fitplane

Fitplane

Background

Background

Background

Add

Image1

Image2

Image3

Size of mosaic
in degrees

square
Number of

input data files
Number of

tasks

Number of
intermediate

files
Total data
footprint

Cummulative
wall time

1 84 387 850 1.9 GB 21 mins
2 300 1442 3176 6.8 GB 54 mins

4 685 3738 8258 18 GB
3 hours, 18

mins
6 1461 7462 16458 37 GB 7 hours, 7 mins

8 2565 12757 28113 64 GB
11 hours, 44

mins

5

HPC versus HTC

§  High Performance Computing
–  Solve one large problem
–  Single job performance
–  Low-latency network
–  Homogeneous
–  Parallel file system
–  PBS
–  Parallel (MPI) Jobs
–  Capability

§  High Throughput Computing
–  Solve many small problems
–  Workload performance
–  Commodity network
–  Heterogeneous
–  No shared file system
–  Condor
–  Serial or Multi-threaded Jobs
–  Capacity

6

Workflows as HTC Applications

§  Throughput is more important than peak performance

§  Care about time to finish entire workflow

§  Loosely-coupled

§  Workflow jobs are typically serial or multithreaded

§  Usually contain lots of small tasks

Most workflows
are HTC

applications

Workflow Tasks Avg Task
Duration (s)

Avg I/O
Read (MB)

Avg I/O
Write (MB)

Peak Memory
(MB)

Montage 10,429 1.7 14.3 4.9 17
CyberShake 815,823 40.6 272.8 1.2 1870
Broadband 770 44.3 1558.2 233.3 942
Epigenome 529 50.7 46.7 10.4 197
LIGO 2,041 90.3 105.0 0.0 969
SIPHT 31 142.8 56.2 48.9 116

7

Workflows on HPC Systems

§  Much of the available infrastructure was designed for HPC
–  Results in many problems for workflows

§  Queue Delays
–  Significantly decreases throughput

§  Unfavorable Policies
–  Max jobs queued
–  Priority for large jobs
–  Can’t express application policies

§  Mismatched I/O patterns
–  Parallel file system designed for few, large parallel files, not lots of small files

§  Lack of (remote) APIs for job submission
–  Many systems do not deploy GRAM, UNICORE, etc.

§  Security Policies
–  Firewalls prevent access outside local network
–  2 factor authentication cannot be automated

8

Task Clustering

§  Cluster short-running tasks together to reduce queue
delays and achieve better performance

§  Why?
–  Each job has scheduling overhead – need to make overhead worthwhile
–  Ideally users should run a job that takes at least 10-30 minutes
–  Clustered tasks can reuse common input data – less data transfers

Level-based clustering
B

C

B

C

B

C

B

C

A

D

B

C

B

C

B

C

B

C

A

D

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

cluster_2cluster_1

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

Horizontal
clustering

Vertical
clustering

Label-based
clustering

10

Task Clustering Results

§  Finding the “best” clustering
parameters can be difficult

§  Too much clustering can
sacrifice parallelism

job
s id

0

5

10

15

20

25

30

elapsed time (seconds)
0 1800 3600 5400 7200 9000 1080012600

queue time
run time

Figure 7. The submit, start and finish time of clusters in one
degree workflow with clustering.

For the rest of the experiments in level-based clustering, we use a
clustering factor of 1, 5, and 10 on 1, 2, and 4 square degree
Montage workflows. Figure 8 shows the workflow completion
times with different clustering factors and without clustering. The
completion times are the average of three runs. The only exception
is the 4 square degree Montage workflow which we could not
execute more then once without clustering due to the significant
number of tasks in the workflow 3008). The workflow completion
times with clustering are considerably less then the unclustered
completion time of the workflows. Taking the average over the
three clustering factors, clustering reduced the workflow
completion time by 68%, 72%, and 65% for the one, two, and four
square degree Montage workflows respectively. In the best case (4
sq degree, 10 clustering factor), the reduction in time is 82%.

Average Workflow Com pletion tim e

0

5

10

15

1 2 4
degrees

h
o

u
rs

1 cluster

5 cluster

10 cluster

unclustered

Figure 8. Workflow completion times with level based
clustering.

Within the various clustering factors, there is little difference except
for the 4 square degree workflow where reducing the clustering
factor seems to increase the completion time of the workflow: as
the clustering factor decreases, the requested wall clock time of
clusters increasesand hence the TeraGrid scheduler has fewer
opportunities to backfill them efficiently, or they get put into a
slower queue on the resource resulting in longer queue wait time for
these clusters.

We also plot the average slowdown of the tasks(clusters) for the
same experiment in Figure 8. The slowdown is defined as (queue
wait time + runtime)/runtime and is used to capture the impact of
the queue wait times on the tasks.

Average Slow Dow n Factor

0
5

10
15
20
25
30

1 2 4
Degrees

S
lo

w
d

o
w

n
 f

ac
to

r 1 cluster

5 cluster

10 cluster

unclustered

Figure 9. Average slowdown with level based clustering.

For the one square degree Montage workflow, the slowdown of
the unclustered workflow is significantly larger than that of the
clustered workflow. For the two and four square degree Montage
workflows, the average slowdown with clustering about the same as
that without clustering. Yet, the final completion time of the
clustered workflows is much less than that of the unclustered ones
(Figure 8), demonstrating the effectiveness of clustering tasks when
both the clustered and unclustered tasks are getting similar quality
of service from the resources. Within different clustering factors,
there is little difference except for the 4 degree workflow where the
slowdown decreases with increase in the clustering factor due to the
reasons mentioned before.

4.2 Label-based clustering

In label-based clustering, we initially cluster using level-based
clustering with clustering factors of 1,5, and 10; and then we
collapse the clusters at levels 3 and 4 into a single cluster and that at
levels 5,6, and 7 into another cluster. Thus the clustered workflows
now have fewer levels than the level-based clustering only. Due to
the resulting reduction in number of dependencies in the workflow,
we anticipated that it would complete earlier than the workflows
clustered using level-based clustering only. Figure 10 shows the
workflow completion times with label and level based clustering.
Each data point is the average of three clustering factors and three
runs of each clustering factor. There doesn’t appear to be much
difference between the two clustering techniques for 1 degree
workflow, but for the larger workflows the label-based clustering
seems to perform better than the level-based only and the difference
increases with the size of the workflow.

Average w orkflow com pletion tim es

0

1

2

3

4

5

1 2 4
degrees

h
o

u
rs

Label+Level Based

Level Based Only

Figure 10. Comparison of label+level and level- based
clustering.

In some cases, a user may want to use a combination of level-based
and label-based clustering techniques. Pegasus supports successive
applications of clustering techniques. For example, a workflow can
be clustered using label-based clustering and the resulting clustered
workflow can be further clustered using level-based clustering. An
example scenario is illustrated in Figure 4 where the label clustered
workflow of Figure 3(2) is further clustered by clustering tasks at
level two into a single cluster.

Figure 4. Overlaying clustering techniques.

Each cluster whether generated using level- or label- based
clustering must satisfy the convexity requirement that dictates that
all paths between any two tasks in a cluster must be completely
contained within it. The cluster shown in Figure 5 is non-convex
since the path from t1 to t3 through t4 is not contained within the
cluster. The difficulty here is that t4 must start execution after t1
has completed and before t3 starts execution. Thus it creates co-
scheduling requirements between clusters. However, due to the best
effort nature of the execution environment, it is not possible to
achieve co-scheduling without explicit resource control.

Figure 5. A non-convex cluster.

Pegasus does error checking to ensure that each cluster created by
grouping the tasks with the same label satisfies the convexity
requirement. Note that the clusters generated using level based
clustering trivially satisfy the convexity requirement since all the
tasks at a level are independent of each other and no path exists
between them. Another restriction of clustering is that the tasks
within a cluster be scheduled to the same resource.

A secondary issue after clustering has been done is to decide how to
execute the tasks in the cluster. Note that the tasks in a cluster can
represent a directed acyclic graph in case of label-based clustering.
Our current approach for this case is to create a topological ordering
of the tasks in the cluster and execute them sequentially based on
this order. This entails a loss in parallelism since the clustered tasks
can be potentially executed in parallel (e.g. level-based clusters).
However, it greatly simplifies the design of the wrapper program

used to execute the cluster and at the same time ensures that all the
dependency requirements are met.

In case of level-based clustering, we have more flexibility in how to
execute the jobs in the cluster. Since, the jobs in a level-based
cluster are always independent of each other, order is not important.
Hence, we can execute the jobs in parallel if required. In this case,
the clustered job can be executed using mpiexec, a wrapper MPI
program written in C that is distributed with Pegasus. The wrapper
when invoked on the remote resource is run on every MPI process,
with the first process being the master and the rest of the processes
acting as workers. The number of instances of mpiexec that are
invoked is equal to the number of nodes requested in the job
submission description. The master distributes the constituent jobs
to the workers.

4. EXPERIMENTS AND RESULTS
In order to evaluate the performance of the various clustering
schemes, we executed the three Montage workflows described in
Table 1 on the NCSA TeraGrid cluster using level- and label- based
clustering.

4.1 Level-based Clustering
For the level based clustering experiments described in this section,
the tasks in a cluster were executed sequentially. The requested wall
clock time of a cluster was the sum of the wall clock times of the
tasks in the cluster. The number of clusters per level of the
workflow is referred to as the clustering factor.

To illustrate the differences between the execution profile of an
unclustered and clustered workflow, Figure 6 shows the queued and
running times of the tasks in an unclustered one degree Montage
workflow (Table 1). The X-axis shows the progression of time after
the workflow was submitted for execution. The Y-axis shows the
task identifiers. For each task we plot the time when it was
submitted to the NCSA TeraGrid queue, the time when it started
running and when it finished running. As the figure shows, the tasks
in the workflow experience queue delays that are significantly more
than their running times. Figure 7 shows the execution of the same
workflow after being clustered using level-based clustering with a
clustering factor of 5. In this case, there are far fewer number of
tasks (clusters) in the workflow and they experience relatively
shorter queue delays leading to a faster completion time (both
Figure 6 and Figure 7 are on the same time-scale).

job
s i

d

0

30

60

90

120

150

180

210

elapsed time (seconds)
0 1800 3600 5400 7200 9000 1080012600

queue time
run time

Figure 6. The submit, start and finish times of tasks in one

degree workflow without clustering.

job
s i

d

0

5

10

15

20

25

30

elapsed time (seconds)
0 1800 3600 5400 7200 9000 1080012600

queue time
run time

Figure 7. The submit, start and finish time of clusters in one
degree workflow with clustering.

For the rest of the experiments in level-based clustering, we use a
clustering factor of 1, 5, and 10 on 1, 2, and 4 square degree
Montage workflows. Figure 8 shows the workflow completion
times with different clustering factors and without clustering. The
completion times are the average of three runs. The only exception
is the 4 square degree Montage workflow which we could not
execute more then once without clustering due to the significant
number of tasks in the workflow 3008). The workflow completion
times with clustering are considerably less then the unclustered
completion time of the workflows. Taking the average over the
three clustering factors, clustering reduced the workflow
completion time by 68%, 72%, and 65% for the one, two, and four
square degree Montage workflows respectively. In the best case (4
sq degree, 10 clustering factor), the reduction in time is 82%.

Average Workflow Com pletion tim e

0

5

10

15

1 2 4
degrees

h
o

u
rs

1 cluster

5 cluster

10 cluster

unclustered

Figure 8. Workflow completion times with level based
clustering.

Within the various clustering factors, there is little difference except
for the 4 square degree workflow where reducing the clustering
factor seems to increase the completion time of the workflow: as
the clustering factor decreases, the requested wall clock time of
clusters increasesand hence the TeraGrid scheduler has fewer
opportunities to backfill them efficiently, or they get put into a
slower queue on the resource resulting in longer queue wait time for
these clusters.

We also plot the average slowdown of the tasks(clusters) for the
same experiment in Figure 8. The slowdown is defined as (queue
wait time + runtime)/runtime and is used to capture the impact of
the queue wait times on the tasks.

Average Slow Dow n Factor

0
5

10
15
20
25
30

1 2 4
Degrees

S
lo

w
d

o
w

n
 f

ac
to

r 1 cluster

5 cluster

10 cluster

unclustered

Figure 9. Average slowdown with level based clustering.

For the one square degree Montage workflow, the slowdown of
the unclustered workflow is significantly larger than that of the
clustered workflow. For the two and four square degree Montage
workflows, the average slowdown with clustering about the same as
that without clustering. Yet, the final completion time of the
clustered workflows is much less than that of the unclustered ones
(Figure 8), demonstrating the effectiveness of clustering tasks when
both the clustered and unclustered tasks are getting similar quality
of service from the resources. Within different clustering factors,
there is little difference except for the 4 degree workflow where the
slowdown decreases with increase in the clustering factor due to the
reasons mentioned before.

4.2 Label-based clustering

In label-based clustering, we initially cluster using level-based
clustering with clustering factors of 1,5, and 10; and then we
collapse the clusters at levels 3 and 4 into a single cluster and that at
levels 5,6, and 7 into another cluster. Thus the clustered workflows
now have fewer levels than the level-based clustering only. Due to
the resulting reduction in number of dependencies in the workflow,
we anticipated that it would complete earlier than the workflows
clustered using level-based clustering only. Figure 10 shows the
workflow completion times with label and level based clustering.
Each data point is the average of three clustering factors and three
runs of each clustering factor. There doesn’t appear to be much
difference between the two clustering techniques for 1 degree
workflow, but for the larger workflows the label-based clustering
seems to perform better than the level-based only and the difference
increases with the size of the workflow.

Average w orkflow com pletion tim es

0

1

2

3

4

5

1 2 4
degrees

h
o

u
rs

Label+Level Based

Level Based Only

Figure 10. Comparison of label+level and level- based
clustering.

11

Pilot Jobs

§  Key idea: Use HPC
scheduler to run
application scheduler

§  Parallel pilot jobs

§  Amortize queue
delays over many
jobs

§  Apply application-
specific policy

HPC System
Worker Node

Host
Node

Manager

Application
Scheduler

6. Join
personal
cluster

Guest
Node

Manager

Local
Resource
Manager

Application
Job

8. Start
application

job

Resource
Provisioner

2. Submit
pilot job

3. Start
pilot job

4. Start

User

7. Submit
application

job

1. Request
resources

Pilot
Job

5. Start 9. Start

12

Pilot Jobs

§  Lots of different pilot job systems have been developed
–  DIRAC, PanDA, glideinWMS, Corral

§  Benefits
–  Higher throughput
–  Lower makespan
–  Better resource utilization
–  Reduced load on LRM
–  Easier to compete

§  Drawbacks
–  Complexity
–  User infrastructure
–  Resource Provisioning

§  Too complex for average users

13

Pegasus-MPI-Cluster

§  A master/worker task scheduler for running fine-grained
workflows on batch systems

§  Runs as an MPI job
–  Uses MPI to implement master/worker protocol

§  Works on most HPC systems
–  Requires: MPI, a shared file system, and fork()

§  Allows sub-graphs of a workflow to be submitted as monolithic
jobs to remote resources

MPI	
 Job	

Master	

(rank	
 0)	

Worker	

(rank	
 N)	
 HPC	
 System	

HPC	

Scheduler	

14

²  Builders ask seismologists: “What will the peak ground

motion be at my new building in the next 50 years?”
²  Seismologists answer this question using Probabilistic

Seismic Hazard Analysis (PSHA)

CyberShake PSHA Workflow

286 Sites, 4 models

§  Each site = one workflow

§  Each workflow has 420,000 tasks
in 21 jobs

Southern California Earthquake Center

Check-
SGTGen-X

Check-
SGTGen-Y

• • •

Update
Run Manager

MPI
Extract

seismogram_
psa

• • •

Seismogram Workflow 8

seismogram_
psa

seismogram_
psa

PMC Clustered Job

1 - 53000

Runs on XSEDE Site

Runs On
XSEDE Sites

Runs Locally

Runs Locally

One Post Processing Workflow
Per Site Per SGT Pair

Check_DB_Site

Notify

Load_Amp

DB_Report Curve_Calc

Diasaggregate

DB Population Workflow

MPI
Extract

seismogram_
psa

• • •

Seismogram Workflow 1

seismogram_
psa

seismogram_
psa

PMC Clustered Job

1 - 53000

Update
Run Manager

Runs Locally

15

Enables earthquake
scientists (SCEC) to run
post-processing (single core)
computations on new
supercomputer architectures
(e.g. Cray XT)

16

I/O Forwarding in PMC

§  Parallel file systems are designed for large, parallel files
–  Striping, concurrent writes, etc.

§  Workflows generate lots of small files
–  Metadata-intensive, no concurrent writes, many files in one directory

§  PMC has a feature called I/O forwarding for this case
–  Each worker opens a pipe to the tasks as it forks them
–  Task writes output on pipe
–  PMC uses MPI messages to transfer data
–  One process aggregates data and writes it to a file
–  Requires no modification to application code

Type Files)/)Workflow Avg)Size
Seismogram 404,864////////////// 200K
PSA 404,864////////////// 200B

CyberShake File Stats

17

Dedicated Head Node

§  No remote job submission interface? Run on head node!
–  Policy often prevents users from having long-running processes

on head node (e.g. workflow systems)
–  Some systems do allow it (Titan), others are willing to install a

node for you if you pay for it (HPCC)

§  Benefits
–  Submit directly to HPC scheduler
–  No firewall issues
–  Great for communities of users

§  Drawbacks
–  Inconvenient
–  Cost
–  Administration

18

Workflows on Titan

§  Titan has no remote job submission interface
–  Other systems like Kraken and Blue Waters have GRAM
–  Security policy prohibits GRAM and similar on Titan
–  Incoming connections require 2-factor authentication

§  Running on head node is possible, but very inconvenient

§  Solution: Run pilot jobs

19

Pilot Jobs on Titan: Challenges

§  How to enable network connections from USC to Titan?
–  Network policy prevents incoming connections to Titan w/o 2-factor auth
–  Solution: Condor connection brokering
–  Condor worker makes persistent outgoing connections to Condor master

at USC, which arranges connections (similar to passive FTP)

§  Where to run Condor worker?
–  Compute nodes can’t talk to outside network
–  Solution: Use aprun from service nodes to launch jobs on compute nodes

§  How to run MPI jobs?
–  Condor has very poor support for MPI
–  Use wrapper scripts to call aprun directly

§  Submitting pilot jobs is still a problem (resource provisioning)

20

Pilot Jobs on Titan: How it works

Service	
 Node	

Titan	

Head	
 Node	

Titan	

PBS	
 Queue	

User logs in

User submits
pilot job for N
compute nodes Pilot job starts

on service node
and runs Condor worker

Condor	

Worker	

Submit	
 Host	
 @	

USC	

Condor	

Master	

Worker sets up reverse connection to master
Advertises n << N virtual slots

CN	
 CN	

User submits
workload

Job	

Wrapper	
 Job gets matched with worker and

Sent via reverse connection Job wrapper uses
aprun to launch
tasks on compute
nodes

Notes:
1.  Data staging jobs run on service node using GridFTP 3rd party transfer
2.  Job wrappers launch both serial and MPI tasks
3.  Most serial tasks in workflow handled by Pegasus-MPI-Cluster
4.  Size of pilot job (N) and num slots (n) are carefully chosen based on workload

21

SNS Refinement Workflow

§  Trying to fit parameter to experimental data
to improve water model

§  Pipeline of simulations for each value (M=20)

§  Simulation code is MPI
NAMD

NAMD

AMBER

Sassena Sassena

N = 288

N = 288

N = 1

N = 144 N = 144

Parameter 1

NAMD

NAMD

AMBER

Sassena Sassena

N = 288

N = 288

N = 1

N = 144 N = 144

Parameter M

...

T=270K

Hq=0.417e
-2Hq

Hq
104.52o

TIP3P water

22

Pegasus-HPC-Cluster

§  Problem: PMC cannot handle MPI jobs
–  MPI launching MPI is tricky
–  PMC scheduler is pull-based (not good for parallel jobs)

§  Pegasus-HPC-Cluster: Like PMC, but for MPI jobs
–  Task graph contains MPI jobs
–  PHC job starts running on service node (or PBS MOM)
–  PHC schedules parallel jobs on available compute nodes
–  aprun/mpiexec used to launch MPI jobs on compute nodes
–  PHC workflow can contain PMC jobs

§  Work in progress

23

Hunting Exoplanets with Kepler

•  Kepler continuously monitors the
brightness of over 175,000 stars
•  Search for periodic dips in signals as

Earth-like planets transit in front of host
star.

•  Need to perform a bulk analysis of
all the data when it is released to
search for these periodic signals

•  Over 380,000 light curves have
been released (x 3 algorithms x 2
parameter sets = 2.2 M tasks)

http://kepler.nasa.gov

Kepler 6-b transit

24

Kepler Evolution

§  Lots of small tasks

§  A few large tasks

§  Runtime varies over a
wide range

Periodogram Task Duration

Duration (minutes)
Fr

eq
ue

nc
y

0 5 10 15 20 25 30 35

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

2868

9790

1954

100 326 148

1899594

N = 1914780

Year Site Inputs Input-Size Outputs Output-Size Jobs Tasks CPU-Cores CPU-Hours
2010 Amazon*EC2 210*K 17.3*GB 2.53*M 182*GB 51*K 1.26*M 128 2,417
2010 TACC*Ranger 210*K 17.3*GB 1.26*M 3*TB 25*K 632*K 256 50,019
2011 Amazon*EC2 210*K 17.3*GB 3.8*M 316*GB 7,065 632*K 256 5,300
2011 FutureGrid 210*K 17.3*GB 3.8*M 316*GB 7,065 632*K 256 5,300
2011 Open*Science*Grid 210*K 17.3*GB 3.8*M 316*GB 7,065 632*K 1300 5,300
2012 SDSC*Trestles 1.1*M 1,650*GB 12.7*M 16*TB 372 2.2*M 640 101,614

2010: Pilot jobs / glideins
2011: Time-based task clustering
2012: Pegasus-MPI-Cluster

25

Conclusion

§  HPC and HTC are different

§  Most scientific workflows are HTC applications

§  There are some tricks to running workflows on HPC

systems
–  Task clustering
–  Pilot jobs
–  Pegasus-MPI-Cluster / Pegasus-HPC-Cluster
–  Dedicated head node
–  Combinations of the above

