
Complex Workloads on HUBzero –
Pegasus Workflow Management

System

Karan	 Vahi	
	

Science	 Automa1on	 Technologies	 Group	
USC	 Informa1on	 Sciences	 Ins1tute	

2

HubZero

§  A valuable platform for scientific researchers
–  For building analysis tools and sharing with researchers and educators.
–  Made available to the community via a web browser

§  Supports interfaces for
–  Designing Analysis tools using the Rappture Toolkit
–  Uploading and creating inputs
–  Visualizing and plotting generated outputs

§  Supports hundreds of analysis tools and thousands of users.

2

3

Hubzero - Scalability

§  Execution of the analysis tools for all users cannot be
managed on the HubZero instance

§  Need to decouple the analysis composition and user

interaction layer from backend execution resources

§  Scalability requires a need to support multiple types of

execution backends
•  Local Campus Cluster
•  DiaGrid
•  Distributed Computational Grids such as Open Science Grid
•  Computational Clouds like Amazon EC2

4

Distributing Analysis - Challenges

§  Portability
–  Some Hubs are tied to local clusters. Others are connected to distributed

computational grids. How do we get the analysis tool to run on local PBS cluster
one day and OSG the next, or run across them.

§  Data Management
–  How do you ship in the small/large amounts data required by the analysis tool?
–  You upload inputs via the web browser, but the analysis runs on a node in a

cluster.
–  Different protocols for different sites: Can I use SRM? How about GridFTP?

HTTP and Squid proxies?

§  Debug and Monitor Computations
–  Users need automated tools to go through the log files
–  Need to correlate data across lots of log files
–  Need to know what host a job ran on and how it was invoked

§  Restructure Analysis Steps for Improved Performance
–  Short running tasks or tightly coupled tasks

•  Run on local cluster a hub is connected to.
–  Data placement?

5

HubZero – Separation of concerns

§  Focus on user interface and provide users
–  means to design, launch analysis steps and inspect and visualize

outputs

§  Model analysis tools as scientific workflows

§  Use a Workflow Management System to manage
computation across varied execution resources.

6

chr21

fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq

fastqSplit fastqSplit fastqSplit fastqSplit fastqSplit fastqSplit

filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams

mapMerge

mapMerge mapMerge mapMerge mapMerge mapMerge mapMerge

map map map map map map map map map map map map

pileup

sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger

create_dir

Scientific Workflows

§  Orchestrate complex, multi-stage scientific computations

§  Often expressed as directed acyclic graphs (DAGs)

§  Capture analysis pipelines for sharing and reuse

§  Can execute in parallel on distributed resources

6

Setup

Split
Filter &

Convert

Map
Merge

Analyze Epigenomics Workflow

7

Why Scientific Workflows?

§  Automate complex processing pipelines

§  Support parallel, distributed computations

§  Use existing codes, no rewrites

§  Relatively simple to construct

§  Reusable, aid reproducibility

§  Can be shared with others

§  Capture provenance of data

8

Pegasus Workflow Management System (WMS)

§  Under development since 2001

§  A collaboration between USC/ISI and the Condor Team at UW
Madison
–  USC/ISI develops Pegasus
–  UW Madison develops DAGMan and Condor

§  Maps abstract workflows to diverse computing infrastructure
–  Desktop, Condor Pool, HPC Cluster, Grid, Cloud

§  Actively used by many applications in a variety of domains
–  Earth science, physics, astronomy, bioinformatics

9

Benefits of workflows in the Hub

§  Clean separations for users/developers/operator
–  User: Nice high level interface via Rappture
–  Tool developer: Only has to build/provide a description of

the workflow (DAX)
–  Hub operator: Ties the Hub to an existing distributed

computing infrastructure (DiaGrid, OSG, …)

§  The Hub Submit and Pegasus handle low level
details
–  Job scheduling to various execution environments
–  Data staging in a distributed environment
–  Job retries
–  Workflow analysis
–  Support for large workflows

10

Pegasus Workflows are Directed Acyclic Graphs

§  Nodes are tasks
–  Typically, executables with arguments.
–  Each executable identified by a unique logical identifier e.g. fft ,

date, fast_split
–  Nodes can also be other workflows

§  File Aware
–  With each node you specify specify the input and
 output files referred to by logical identifiers.

§  Edges are dependencies
–  Represent data flow
–  Can also be control dependencies
–  Pegasus can infer edges from data use

§  No loops, no branches
–  Recursion is possible
–  Can generate workflows in a workflow
–  Can conditionally skip tasks with wrapper

§  Captures computational recipe, devoid of resource
descriptions, devoid of data locations, that is
portable and can be easily shared.

B B

D

A

B B

C C C C

11

Abstract to Executable Workflow Mapping

 Abstraction provides
–  Ease of Use (do not need to worry

about low-level execution details)
–  Portability (can use the same

workflow description to run on a
number of resources and/or across
them)

–  Gives opportunities for
optimization and fault tolerance

•  automatically restructure the
workflow

•  automatically provide fault
recovery (retry, choose
different resource)

Pegasus Guarantee -
Wherever and whenever a
job runs it’s inputs will be in
the directory where it is
launched.

Pegasus compiles the Abstract Workflow to an Executable Workflow
that can be executed on varied distributed execution environments

12

Supported Data Staging Approaches - I

§  Worker nodes and the head node have
a shared filesystem, usually a parallel
filesystem with great I/O characteristics

§  Can leverage symlinking against
existing datasets

§  Staging site is the shared-fs.

Submit
Host

Compute Site

Shared
FS

WN

WN

HPC Cluster

Shared Filesystem setup (typical of XSEDE and HPC sites)

Non-shared filesystem setup with staging site (typical of OSG and EC 2)

§  Worker nodes don’t share a filesystem.
§  Data is pulled from / pushed to the

existing storage element.
§  A separate staging site such as S3. Compute Site

Submit
Host

Staging
Site

WN

WN
Amazon

EC2 with S3
Jobs
Data

HubZero uses Pegasus to run a single application
worklow across sites, leveraging shared filesystem at
local PBS cluster and non shared filesystem setup at
OSG!

13

Supported Data Staging Approaches - II

§  Worker nodes don’t share a filesystem
§  Symlink against datasets available locally
§  Data is pulled from / pushed to the

submit host via Condor file transfers
§  Staging site is the submit host.

Using Pegasus allows you to move from one
deployment to another without changing the
workflow description!

Condor IO (Typical of large Condor Pools like CHTC)

Supported Transfer Protocols – for directory/file
creation and removal, file transfers

§  HTTP
§  SCP
§  GridFTP
§  IRODS
§  S3 / Google Cloud Storage
§  Condor File IO
§  File Copy
§  OSG Stash

Submit
Host

Local FS

Compute Site

WN WN
Jobs
Data

Pegasus Data Management Tools
pegasus-transfer, pegasus-create-dir, pegasus-
cleanup support client discovery, parallel transfers,
retries, and many other things to improve transfer
performance and reliability

14

Workflow Reduction (Data Reuse)

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.
Reuse it.
Mark Jobs D and B to delete

Delete Job D and Job B

Useful when you have done a part of computation and then realize the
need to change the structure.

15

File cleanup

§  Problem: Running out of disk space during workflow execution

§  Why does it occur
–  Workflows could bring in huge amounts of data
–  Data is generated during workflow execution
–  Users don’t worry about cleaning up after they are done

§  Solution
–  Do cleanup after workflows finish

•  Add a leaf Cleanup Job
–  Interleave cleanup automatically during workflow execution.

•  Requires an analysis of the workflow to determine, when a file is no longer required
–  Cluster the cleanup jobs by level for large workflows
–  In 4.6 release, users should be able to specify maximum disk space that should

not be exceeded. Pegasus will restructure the workflow accordingly.

Real Life Example: Used by a UCLA genomics researcher to delete TB’s
of data automatically for long running workflows!!

16

File cleanup (cont)

Single SoyKB NGS Pegasus Workflow with 10 input reads.

17

Workflow Restructuring to improve application performance

§  Cluster small running jobs together to achieve better
performance

§  Why?
–  Each job has scheduling overhead – need to make this overhead

worthwhile
–  Ideally users should run a job on the grid that takes at least 10/30/60/?

minutes to execute
–  Clustered tasks can reuse common input data – less data transfers

Horizontal clustering

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

cluster_2cluster_1

B B

D

A

B B

C C C C

Label-based clustering

18

Workflow Monitoring - Stampede

§  Leverage Stampede Monitoring framework with DB backend
–  Populates data at runtime. A background daemon monitors the logs files and

populates information about the workflow to a database
–  Stores workflow structure, and runtime stats for each task.

§  Tools for querying the monitoring framework
–  pegasus-status

•  Status of the workflow
–  pegasus-statistics

•  Detailed statistics about your finished workflow
–  Integrated into Hub infrastructure via the submit integration

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002
Jobs 4529 0 0 4529 0 4529
Sub-Workflows 2 0 0 2 0 2
--

Workflow wall time : 13 hrs, 2 mins, (46973 secs)
Workflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

19

Workflow Debugging Through Pegasus

§  After a workflow has completed, we can run pegasus-
analyzer to analyze the workflow and provide a summary
of the run

§  pegasus-analyzer's output contains
–  a brief summary section

•  showing how many jobs have succeeded
•  and how many have failed.

–  For each failed job
•  showing its last known state
•  exitcode
•  working directory
•  the location of its submit, output, and error files.
•  any stdout and stderr from the job.

Integrated with Submit . Alleviates the need for searching through lots of
logs files and integrated with submit command.

20

Different Types of Analysis tools on HubZero

§  Parameter Sweep Analysis
–  Execute independent analysis steps on a set of input data, and merge the

data and inspect it

§  Sequential Analysis
–  Execute analysis steps sequentially one after the other, with each step

taking in the input of the previous steps.

§  DAG based analysis
–  Multistage analysis where each stage can be a single job or multiple

stages

20

Hubzero Pegasus Integration

22

How to generate the workflow

§  Tool description file tool.xml specifies a python run script
(driver file) called by the Rappture interface when you hit
the submit button

Two options on how to generate the DAX in python run script
1.  Use the Pegasus Python DAX API to generate the DAX in the run

script
2.  Call out to an external application-specific DAX generator

§  Compose the workflow programmatically and launch it
using the Hub command line interfaces (Workspaces +
submit).

Arch diagram

User interaction with Pegasus enabled
analysis tool - BLASTer

Acknowledgements: Steven Clark , Chris Thomson and Derrick Kearney, Purdue University

24

25

Pegasus Tutorial tool now available in HUBZero

https://hubzero.org/tools/pegtut

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

26

Inputs

Tool
description

Outputs

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

Rappture (data
definitions) and
describes the generated
user interface

27

Wrapper.py

§  Python script that is the glue
between Rappture and user

§  Collects the data from the
Rappture interface

§  Generates the DAX

§  Runs the workflow

§  Presents the outputs to
Rappture

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

28

Rappture (workflow definition)

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

29

User provides inputs to the workflow and clicks the “Submit”
button

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

30

Workflow has completed. Outputs are available for browsing/downloading

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

31

Submit Command

§  Used by Rappture interface to submit the workflow
§  Submits the workflow through Pegasus to

–  OSG
–  DIAGRID
–  Local Cluster

§  Prepares the site catalog and other configuration
files for Pegasus

§  Uses pegasus-status to track the workflow
§  Generates statistics and report about job failures

using pegasus tools.
–  Error reports in file pegasus.analysis
–  Job statistics and status pegasusjobstats.csv pegasusstatus.txt

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

Examples of Pegasus Usage in
Hubs

33

Pegasus on Hub Platforms

§  Using Workspaces
–  Pegasus installed on all hubs
–  Users can directly submit and compose workflows through

Pegasus and execute on OSG, DiaGrid.

§  Integrated into published tools on various Hubs
–  Various tools in NanoHub, DiaGrid, NEESHub

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

34

Pegasus on Hub Platforms

§  Using Workspaces
–  Pegasus and submit installed on all hubs
–  Users can directly submit and compose workflows through Pegasus and execute on OSG,

Diagrid.

§  Nanohub
–  Perform parameter sweep on variables (CNTFET Lab, nanoFET, NanoPlasiticity)
–  Jobs are executed on Open Science Grid and DiaGrid
–  CNTFET Lab - Simulates using carbon nanotubes as field effect transistors
–  nanoFET - Simulates 2D mosfet devices.
–  NanoPlasticity - Investigates how nano-crystalline materials deform, includes uncertainty

quantification.

§  DiaGrid
–  BLASTer - online tool to run BLAST (Basic Local Alignment Search Tool) on the

DiaGrid Hub.
–  Cryo-EM - Electron cryo-microscopy (cryo-EM) for 3-D structure of large macromolecular

machines
–  SubmitR - Run R scripts on high-performance computing resources.

§  NEESHub
–  OpenSEES – suite of simulation tools for submitting NEES scripts and for education and

outreach.

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

35

Pegasus on Hub Platforms

§  Rappture Based Tools
–  Tools built using the Rappture GUI Builder
–  Users configure the simulation, prepare inputs using Rappture tool UI
–  Tool execution results in workflows launched through Submit/Pegasus
–  Jobs execute on DiaGrid and Open Science Grid, and outputs staged back to Hub
–  Users visualize the outputs in the tool UI
–  Tools in NanoHub, DiaGrid, NEESHub

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

a) Specify and configure simulation
in the tool UI

NanoPlasticity Tool in
NanoHub

c) Inspect outputs in tool UI b) Workflow Executing through Pegasus

36

Relevant Links

§  Pegasus: http://pegasus.isi.edu
–  Tutorial and documentation:

http://pegasus.isi.edu/wms/docs/latest/
–  Support: pegasus-users@isi.edu

pegasus-support@isi.edu

§  Rappture & Submit:
–  https://hubzero.org/documentation/2.0.0/tooldevs/

grid.rappture_submit

§  Submit Command
–  https://hubzero.org/documentation/2.0.0/tooldevs/grid.submitcmd

§  Pegasus Workflows on HubZero
–  https://hubzero.org/documentation/2.0.0/tooldevs/grid.pegasuswf
–  Tutorial https://hubzero.org/tools/pegtut

