
Workflow Tools

Interna'onal	
 HPC	
 Summer	
 School	

June	
 26,	
 2015	

	

Gideon	
 Juve	

gideon@isi.edu	

2

Overview

§  What are scientific workflows and why use them?
§  Example workflow applications
§  Overview of available workflow systems

§  Introduction to Pegasus WMS

3

What	
 are	
 workflows?	

3

4

Scientific Workflows

§  Formal way to capture multi-step
computations

§  Relatively coarse grained
§  Capture the steps and their

parameters
§  Define the input/output data of each

step
§  Describe dependencies between

steps

5

Workflows can be simple!

J3J1 J2 J4 J5 J9J8J6 J7 Jn

6

Why Scientific Workflows?

§  Automate complex, multi-stage processing pipelines
§  Enable parallel, distributed computations

§  Use existing code, no rewrites
§  Simple to construct and modify
§  Reusable, aid reproducibility
§  Can be shared with others
§  Record how data was produced (provenance)
§  Handle failures with to provide reliability
§  Keep track of data and files

Science-grade Mosaic of the Sky

Science-grade Mosaic of the Sky

Montage Workflow

Reprojection Background Rectification Co-addition Output Input

BgModel

Project

Project

Project

Diff

Diff

Fitplane

Fitplane

Background

Background

Background

Add

Image1

Image2

Image3

Size of mosaic
in degrees

square
Number of

input data files
Number of

tasks

Number of
intermediate

files
Total data
footprint

Cummulative
wall time

1 84 387 850 1.9 GB 21 mins
2 300 1442 3176 6.8 GB 54 mins

4 685 3738 8258 18 GB
3 hours, 18

mins
6 1461 7462 16458 37 GB 7 hours, 7 mins

8 2565 12757 28113 64 GB
11 hours, 44

mins

montage.ipac.caltech.edu

9

Bag of Tasks: Periodogram Workflow

•  Kepler continuously monitors the
brightness of over 175,000 stars
•  Search for periodic dips in signals as

Earth-like planets transit in front of host
star.

•  For each star, Kepler data is used
to create a “light curve”

•  Need to perform a bulk analysis of
all the data to search for these
periodic signals

Kepler 6-b transit

2012 Run at SDSC
•  1.1M tasks, 180 jobs
•  1.1M input, 12M output files
•  ~101,000 CPU hours
•  16 TB output data exoplanetarchive.ipac.caltech.edu

10

Parameter
Values

Equlibrate
Stage

Production
Stage

Filtering

Coherent Incoherent

Post-processing
and Viz

Amber14Amber14Amber14

Workflows with MPI Codes: Neutron Scattering

§  Spallation Neutron Source at ORNL
§  Parameter sweeps of MD and

neutron scattering simulations
–  Fit simulation to experimental data
–  e.g. temperature, charge, force

§  Nanodiamond Workflow
–  Feb 2015 on Hopper using GRAM and

GridFTP
–  19 parameter values for nonbonded

interactions between ND and H2O
–  800 core NAMD jobs x 22 hrs
–  400 core Sassena jobs x 3 hrs
–  ~380,000 CPU hours
–  ~1/2 TB output

11

2014: 286 Sites, 4 models
§  Each site = one workflow
§  Each workflow has 420,000 tasks in 21

jobs using task clustering w/ PMC
§  BlueWaters@NCSA, Stampede@TACC

²  Builders ask seismologists: “What will the peak ground

motion be at my new building in the next 50 years?”
²  Seismologists answer this question using Probabilistic

Seismic Hazard Analysis (PSHA)

Large-Scale Workflows: CyberShake PSHA

Check-
SGTGen-X

Check-
SGTGen-Y

• • •

Update
Run Manager

MPI
Extract

seismogram_
psa

• • •

Seismogram Workflow 8

seismogram_
psa

seismogram_
psa

PMC Clustered Job

1 - 53000

Runs on XSEDE Site

Runs On
XSEDE Sites

Runs Locally

Runs Locally

One Post Processing Workflow
Per Site Per SGT Pair

Check_DB_Site

Notify

Load_Amp

DB_Report Curve_Calc

Diasaggregate

DB Population Workflow

MPI
Extract

seismogram_
psa

• • •

Seismogram Workflow 1

seismogram_
psa

seismogram_
psa

PMC Clustered Job

1 - 53000

Update
Run Manager

Runs Locally

12

Workflow Management Systems

§  Automate execution of workflows
§  Workflow language

–  Used to describe the workflow
–  Visual with GUI or text-based
–  Frequently based on DAGs, but some provide loops and branches or

more exotic semantics

§  Workflow engine
–  Manages the scheduling, submission, and monitoring of tasks
–  Orchestrates the movement of data
–  Interfaces with diverse cyberinfrastructure (grids, clusters, clouds)

§  There are lots of workflow management systems
–  Some are abandoned research projects

13

Swift (swift-lang.org)

§  Developed at the University of Chicago
§  Workflow defined via parallel scripting language

//Create new type
type messagefile;
//Create app definition, returns messagefile
app (messagefile t) greeting() {
 //Print and pipe stdout to t
 echo “Hello, world!” stdout=filename(t);
}
//Create a new messagefile, linked to hello.txt
messagefile outfile <“hello.txt”>
//Run greeting() and store results
outfile = greeting();

§  Supports workflows with many tasks and large data
§  Interfaces with many different cluster, grid and cloud

infrastructures

14

Kepler (kepler-project.org)

§  Developed by a diverse
group of collaborators

§  GUI-based
–  Composition and execution
–  View outputs

§  Many different models of
computation
–  Actor model with different

execution semantics

§  Interfaces with grids,
clusters, and web services

§  Component repository for
sharing and lots of built-in
components

15

Taverna (www.taverna.org.uk)

§  Developed by a collaboration of UK universities
§  GUI workflow composition

–  DAGs, loops, data parallel, merges

§  Web services and local scripts/commands (mostly)

§  Particularly good for bioinformatics

Taverna

§  Integrates with
myExperiment for
sharing workflows

§  Leverages service
catalogs for easy
workflow composition

16

WS-PGRADE/gUSE (guse.hu)

§  Developed at the Hungarian Academy of Sciences
§  GUI interface for workflow composition
§  Supports template DAGs for parameter sweep, WoW
§  Integrated web portal/gateway
§  Interfaces with many

different infrastructures
§  Extensive documentation

17

Other Workflow Systems

§  VisTrails (vistrails.org)
–  Used for visualization pipelines with VTK

§  Galaxy (galaxyproject.org)
–  Oriented toward biomedical research
–  Interfaces with many web services
–  Web-based GUI interface

§  UNICORE Workflow System (unicore.eu)
–  GUI for workflow composition, or XML
–  Branches, loops, parallel loops

§  Makeflow (ccl.cse.nd.edu/software)
–  Simple, make-like workflow language
–  Targets many different grid, cluster systems

18

Pegasus Workflow Management System

§  Under development since 2001
§  A collaboration between USC/ISI and the Condor

Team at UW Madison
–  USC/ISI develops Pegasus
–  UW Madison develops DAGMan and Condor

§  Actively used in a wide variety of domains
–  Earth science, physics, astronomy, bioinformatics, climate

modeling, neutron science, and many others
–  About 600 workflows a day

19

Why Pegasus?

§  Maps abstract workflows to diverse computing infrastructures
–  Desktop, Condor Pool, HPC Cluster, Grid, Cloud

§  Supports large-scale, data-intensive workflows
–  O(1M) tasks and O(TB) of data

§  Automatically plans and executes data transfers

§  Manages failures to provide reliability
–  Retries and checkpointing

§  Provides workflow monitoring and debugging tools to allow
users to debug large workflows

§  Technical support
–  full-time staff, mailing lists, public repository and bug tracker, regular

releases, decent documentation

20

chr21

fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq

fastqSplit fastqSplit fastqSplit fastqSplit fastqSplit fastqSplit

filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams

mapMerge

mapMerge mapMerge mapMerge mapMerge mapMerge mapMerge

map map map map map map map map map map map map

pileup

sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger

create_dir

Pegasus Workflows

§  Expressed as a DAG: nodes=tasks, edges=dependencies

§  Tasks are command-line programs, executed as batch jobs

§  Dependencies are usually data dependencies

§  Data is exchanged via files

Setup

Split
Filter &

Convert

Map
Merge

Analyze Epigenomics Workflow

21

Pegasus WMS Environment

API Interfaces

Portals

Other Workflow
Composition

Tools: Grayson,
Triana, Wings

Pegasus WMS

Mapper

Engine

Scheduler

Users

Distributed Resources
Campus Clusters, Local Clusters, Open Science Grid, XSEDE

GRAM
P
B
S

LSF SGE

C
O
N
D
O
R

STORAGECOMPUTEMIDDLEWARE

Cloudware
OpenStack

 Eucalyptus, Nimbus

GridFTP

HTTP

FTP

SRM

IRODS

Storage

SCP

Compute
 Amazon EC2, RackSpace,

FutureGrid

Workflow
DB

Monitoring

Logs

Notifications

S3

Clouds

22

Pegasus WMS Data Flow

DAX

Site
Catalog

Trans.
Catalog

Replica
Catalog

Pegasus
<Planner>

DAG

Submit
Script

DAGMan
<Engine>

Condor
<Scheduler>

Config

23

Workflow Planning (Mapping)

§  Pegasus converts abstract workflow descriptions
into executable workflows (similar to compiler)
–  Facilitates portability
–  Separates data management from workflow composition
–  Enables workflow-level optimizations
–  Others…

§  Planning process:
–  Choose a site for each job (site selection)
–  Add resource-specific information
–  Choose input files (replica selection)
–  Plan data movements and add data management jobs
–  Perform optimizations
–  Add setup and cleanup jobs
–  Generate executable workflow artifacts

24

Abstract to Executable Workflow Mapping

Data Management

•  Input	
 Data	
 Site,	
 Compute	
 Site	
 and	
 Output	
 Data	
 Sites	
 can	
 be	
 co-­‐located	

–  Example:	
 Input	
 data	
 is	
 already	
 present	
 on	
 the	
 compute	
 site.	

•  Most	
 of	
 the	
 tasks	
 in	

scien'fic	
 workflow	

applica'ons	
 require	

POSIX	
 file	
 seman'cs	

–  Each	
 task	
 in	
 the	

workflow	
 opens	
 one	
 or	

more	
 input	
 files	

–  Read	
 or	
 write	
 a	
 por'on	

of	
 it	
 and	
 then	
 close	
 the	

file.	

•  Data	
 Staging	
 Site	
 can	

be	
 the	
 shared	

filesystem	
 on	
 the	

compute	
 cluster!	

26

Staging Site

Data Staging Configurations

§  Worker nodes and the head node have a
shared filesystem, usually a parallel
filesystem with high-performance I/O

§  Can leverage symlinking against pre-
staged datasets

§  Staging site is the compute site

Submit
Host

Compute Site

Shared
FS

WN

WN
(e.g. your laptop)

Shared File System (typical of most HPC sites)

Non-shared File System (typical of OSG and EC2)

§  Worker nodes don’t share a file system
§  Uses a staging site separate from the

compute site such as Amazon S3
§  Data is pulled from / pushed to the

staging site
§  Also known as “PegasusLite”

Compute Site

Submit
Host

Storage
Server

WN

WN

Jobs
Data

27

Data Staging Configurations

§  Worker nodes don’t share a file system
§  Data is pulled from / pushed to the

submit host via Condor file transfers
§  Staging site is the submit host

Using Pegasus allows you to move from one
deployment to another without changing the

workflow description

Condor I/O (Typical of Condor Pools like OSG sites)

Submit
Host

Local FS

Compute Site

WN WN
Jobs
Data

Many Data Protocols Supported:
§  SCP
§  HTTP
§  FTP

§  GridFTP
§  Amazon S3
§  iRODS

§  SRM
§  cp
§  symlink

§  FDT
§  Google Storage
§  StashCache

28

Workflow Monitoring and Reporting

§  Data collection
–  Data extracted from log files and stored in a relational database
–  DB contains workflow structure, status information, runtimes, host

info, task stdout/stderr

§  Reporting tools
–  Status of the workflow

•  pegasus-status path/to/submit/directory
–  Detailed runtime statistics

•  pegasus-statistics -s all path/to/submit/directory

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002
Jobs 4529 0 0 4529 0 4529
Sub-Workflows 2 0 0 2 0 2
--

Workflow wall time : 13 hrs, 2 mins, (46973 secs)
Workflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

29

Pegasus Dashboard
§  Web-based workflow monitoring GUI

–  Data comes from monitoring database
–  Supports monitoring, troubleshooting, and reporting

Dashboard

Workflow Details

Job Details

30

Failure Management

§  Pegasus detects job failures
–  non-zero exit code
–  output does not contain a specified “success message”
–  output does contain a specified “failure message”
–  it exceeds a specified time limit
–  it fails to produce expected output files

§  Job Retries
–  Helps with transient failures
–  Each job has a set number of retries per run

§  Rescue DAGs
–  DAGMan writes a checkpoint file so workflow can be restarted
–  Can recover from almost any failure with minimal loss

§  Checkpoint files
–  Job generates checkpoint files
–  Staging of checkpoint files is automatic on restarts

31

Workflow Debugging

§  Problem: You have 1M tasks, and one of them fails
§  pegasus-analyzer: Provides summary of workflow

execution
§  Outputs

–  A brief summary section
•  showing how many jobs have succeeded
•  and how many have failed

–  For each failed job:
•  showing its last known state
•  exitcode
•  working directory
•  the location of its submit, output, and error files
•  any stdout and stderr from the job

32

Task Clustering

§  Cluster small running jobs together to achieve better
performance

§  Why?
–  Each job has scheduling overhead – need to make this overhead

worthwhile
–  Ideally users should run a jobs that take at least 10/30/60/? minutes
–  Clustered tasks can reuse common input data – less data transfers

Horizontal clustering

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

cluster_2cluster_1

B B

D

A

B B

C C C C

Label-based clustering

Also: time-based clustering

33

Pegasus-MPI-Cluster

§  A master/worker task scheduler for running fine-grained
workflows and ensembles on HPC systems

§  Runs as an MPI job à Works on most HPC systems

§  Allows sub-graphs of a Pegasus workflow to be
submitted as monolithic jobs to remote resources

§  Can be used on a sub-graph, or the entire workflow

Master	

(rank	
 0)	

Worker	

(rank	
 1-­‐N)	

TASK A /bin/echo I am A
TASK B /bin/echo I am B
TASK C /bin/echo I am C
EDGE A B
EDGE A C

A	

B	
 C	

34

PMC Features

§  Fault Tolerance
–  Retries at the task level (master resends task to another worker)
–  Retries at the workflow level (using a transaction log to record

progress)

§  Resource-aware scheduling
–  Many HPC machines have low memory/core
–  PMC can allocate memory and cores to a task, and force other slots on

the same node to be idle

§  I/O Forwarding
–  Small tasks == small I/O == poor performance
–  PMC reads data off of pipes from worker and forwards it using MPI

messages to a central I/O process, which collects the data and writes it
to disk

–  Writes are not interleaved, no locking required for synchronization

35

Resource Provisioning with Pilot Jobs

§  Key idea: Use HPC
scheduler to run
application
scheduler

§  Parallel pilot jobs

§  Amortize queue
delays over many
application jobs

§  Apply application-
specific policy

HPC System
Worker Node

Host
Node

Manager

Application
Scheduler

6. Join
personal
cluster

Guest
Node

Manager

Local
Resource
Manager

Application
Job

8. Start
application

job

Resource
Provisioner

2. Submit
pilot job

3. Start
pilot job

4. Start

User

7. Submit
application

job

1. Request
resources

Pilot
Job

5. Start 9. Start

36

Data Cleanup

Problem: Workflow uses more disk space than quota
Solution: Add cleanup jobs to the workflow

Montage 1 degree workflow run with cleanup

37

Workflow Reduction (Data Reuse, Restarts)

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.
Reuse it.
Mark Jobs D and B to delete

Delete Job D and Job B

Data reuse happens automatically when
output files are found in the replica catalog

38

Large-scale, Hierarchical Workflows

39

Other Features

§  Job and Transfer Throttling
–  Prevents too many jobs/transfers from overloading system

§  Notifications
–  System calls a script when certain events occur: send email, text, etc.

§  Executable and Worker Package Staging
–  Enables dynamic deployment of code on remote sites
–  Planner matches the executable in the TC to the site in the SC

§  Kickstart Job Wrapper
–  Records detailed information about job execution (execution host,

environment, memory usage, I/O, files accessed, CPU time, etc.)

§  Shell planner mode
–  Generate a shell script of your workflow

40

Final Thoughts

§  Probably using a workflow already
–  Replaces scripts, manual hand-offs and polling to monitor

§  Automation is vital
–  Eliminate babysitting your jobs: your time is valuable!
–  Able to recover from failures without losing work

§  Put ALL processing steps in the workflow
–  Include validation, visualization, data publishing, notifications

§  Does add additional software layers and complexity
–  Some development time is required

§  Choose workflow system carefully
–  Consider required features, target environment, maturity, support

§  We want to help you!

41

Questions?

42

Some Computational Science Challenges

§  Integrate several programs into one pipeline
§  Run an ensemble of simulations
§  Repeat processing steps on new data or parameters
§  Reproduce previous results, or similar results
§  Share analysis steps with other researchers
§  Recreate the history of data products
§  Run code on hundreds or thousands of inputs
§  Execute analyses in parallel on distributed resources
§  Reliably execute pipelines on unreliable infrastructure

Scientific workflows can help with
these problems

43

Workflow Management System Functionality

§  Job execution
–  Interfaces with middleware and batch systems to submit and monitor jobs

§  Data and control dependencies between jobs
–  Tracks dependencies and makes sure jobs are executed in the right order

§  Scheduling
–  Some jobs may be able to run in parallel with others
–  Ordering and placement can improve performance

§  Data management
–  Transfers of input and output files to/from machine

§  Provenance
–  Track when a job was run, where it was run, what data it produced, key

parameters, metadata

§  Reliability
–  Keeps track of what finished successfully, and what did not

§  Resource provisioning
–  Allocating resources to run jobs

44

Example Workflow

first_job

simul_job

input.txt

tmp.txt

output.0.dat output.1.dat output.2.dat output.3.dat output.4.dat

simul_job simul_job simul_job simul_job

45

Example DAX Generator in Python
Create DAX object
dax = ADAG("test_dax")

Define first job

firstJob = Job(name="first_job")

Input and output files to first job

firstInputFile = File("input.txt")

firstOutputFile = File("tmp.txt")

Args to first_job (first_job input=input.txt output=tmp.txt)

firstJob.addArgument("input=input.txt", "output=tmp.txt")
Role of the files for the job

firstJob.uses(firstInputFile, link=Link.INPUT)

firstJob.uses(firstOutputFile, link=Link.OUTPUT)

Add the job to the workflow

dax.addJob(firstJob)

46

for i in range(0, 5):
 # Create simulation job
 simulJob = Job(id="%s" % (i+1), name="simul_job")
 # Define files
 simulInputFile = File("tmp.txt")

 simulOutputFile = File("output.%d.dat" % i)
 # Arguments to job
 # simulJob parameter=<i> input=tmp.txt output=output<i>.dat

 simulJob.addArgument("parameter=%d" % i, "input=tmp.txt",
 "output=%s" % simulOutputFile.getName())

 # Role of files
 simulJob.uses(simulInputFile, link=Link.INPUT)
 simulJob.uses(simulOutputFile, line=Link.OUTPUT)
 # Add job to dax
 dax.addJob(simulJob)
 # Dependency on firstJob
 dax.depends(parent=firstJob, child=simulJob)
Write to file
fp = open("test.dax", "w")
dax.writeXML(fp)
fp.close()

47

Site Catalog

§  Stores details about each target execution/storage site
–  Job submission endpoints (GRAM URL, etc.)
–  Paths to storage/scratch directories
–  Data transfer services (GridFTP servers, etc.)
–  Paths to credentials (X509 proxy, ssh key, etc.)
–  Site-level configuration (environment variables, etc.)
–  “local” site is special—refers to submit host

<!-- Example site catalog -->
<sitecatalog>
 <site handle="example" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="example.isi.edu/jobmanager-fork” jobtype="auxillary"/>
 <grid type="gt5" contact="example.isi.edu/jobmanager-pbs” jobtype="compute"/>
 <directory type="shared-scratch" path="/scratch">
 <file-server operation="all" url="gsiftp://example.isi.edu/scratch"/>
 </directory>
 <profile namespace="env" key="GLOBUS_LOCATION">/usr/local/globus</profile>
 <profile namespace=“pegasus” key=“style”>globus</profile>
 <profile namespace=“pegasus” key=“X509_USER_PROXY”>/tmp/x509_u40001</profile>
 </site>
</sitecatalog>

48

Transformation Catalog

§  Maps transformations to executables on each site
–  Physical path or URL of executable and dependent data/

configuration files
–  Executable characteristics (OS, architecture, glibc, etc.)
–  Job-level configuration (e.g. environment variables, profiles)

Example transformation catalog
tr example::date {

 profile env ”TZ" ”America/Los_Angeles”

 site example {
 pfn "/bin/date"
 os "linux"
 arch "x86_64"
 type "INSTALLED"
 }
}

49

Replica Catalog

§  Maps logical files to physical files
–  LFN (name) to PFN (path or URL)
–  Mappings annotated with metadata (e.g. site/pool, size, etc.)

§  Enables Pegasus to choose “best” replica (replica
selection phase of planner)

§  Where Pegasus registers workflow output locations
§  Support file-based or DB-based RC (also callout)

Example replica catalog
f.1 gsiftp://example.isi.edu/inputs/f.1 pool=”example”
f.1 file:///inputs/f.1 pool=”example”
f.2 file:///inputs/f.2 pool=“example”
f.2 file:///inputs/f.2 pool=“local”

“pool” == site

50

Configuration Properties and Profiles

§  Specify all the tuning knobs for Pegasus
§  Unification of properties and profiles several years ago
§  Often in a “pegasus.properties” file (or command-line)

§  Some are global and apply to all sites and jobs
§  Some (profiles) can also be specified in the TC, SC and

DAX with different scopes
§  Examples

–  pegasus.data.configuration = sharedfs
–  pegasus.style = condor
–  dagman.retry = 2
–  pegasus.exitcode.successmsg = “All data processed”

51

Data Management

§  Pegasus supports several
different data configurations
–  Many protocols
–  Complex data flows

§  Workflow file types
–  Input
–  Intermediate
–  Output

§  Sites
–  Local site: Pegasus WMS
–  Storage site: inputs and

outputs
–  Staging site: intermediate
–  Compute site: compute jobs

Submit Host
(Local Site) Input Site

Staging Site Compute Site

Output Site

52

Checkpoint Files

§  A job can specify that it uses one or more checkpoint
files

§  Checkpoint files are both input files and output files

§  Pegasus will stage-out these files in the case that job fails
–  Typically due to a timeout on long-running jobs
–  Jobs must periodically write checkpoint files (no signals are given)

§  Pegasus will stage-in these files before retrying the job
–  They will appear in the working directory of the job

53

Workflow and Task Notifications

§  Users want to be notified at certain points in the workflow
or on certain events

§  Support for adding notification to workflow and tasks

§  Event based callouts
–  On Start, On End, On Failure, On Success
–  Examples contain email and jabber notification scripts
–  Can run any user provided scripts
–  Defined in the DAX

54

Pegasus clients for data management

§  pegasus-transfer, pegasus-create-dir, pegasus-cleanup
§  Support many different protocols

–  HTTP
–  SCP
–  GridFTP
–  IRODS

§  Remote directory creation and removal
§  Support client discovery, parallel transfers, retries, and

many other things to improve transfer performance and
reliability

–  Amazon S3
–  SRM
–  cp
–  ln -s

55

Different Directories used by Pegasus

1.  Submit Directory
–  The directory where pegasus-plan generates the executable workflow i.e

HTCondor DAGMan and job submit files.
–  Specified by --dir option to pegasus-plan

2.  Input Directory
–  Mostly input file locations are catalogued in the Replica Catalog.
–  However, if inputs are on the submit host, then you can pass –input-dir

option to pegasus-plan

3.  Scratch Directory
–  Workflow specific directory created on the staging site by the create-dir

job. This is where all the workflow inputs and outputs are gathered.
–  The base directory specified in the site catalog entry in sites.xml file.

4.  Output Directory
–  The output directory where the outputs of the workflow appear.
–  Specified in the output site entry in the sites.xml file.
–  Can also be optionally specified by –output-dir option to pegasus-plan

55

56

Planning and Submitting workflows

§  pegasus-plan
–  Interface to the Pegasus planner
–  Specify input dir
–  Specify compute site(s)
–  Specify staging site(s)
–  Specify output dir or output site

§  Pegasus-run
–  Start and restart the workflow

57

Problems Workflows Solve

§  Task executions
–  Workflow tools will retry and checkpoint if needed

§  Data management
–  Stage-in and stage-out data
–  Ensure data is available for jobs automatically

§  Task scheduling
–  Optimal execution on available resources

§  Metadata
–  Automatically track runtime, environment, arguments, inputs

§  Getting cores
–  Whether large parallel jobs or high throughput

58

Askalon (askalon.org)

§  Developed at
University of Innsbruck in
Austria

§  Create workflow description
in AGWL (XML) or UML
–  if, for, parallelFor, DAGs

§  Conversion: like planning, to
bind to specific execution

§  Submit jobs to Enactment
Engine, which distributes
jobs for execution at remote
cluster, grid or cloud sites

§  GUI for composition and
monitoring

59

Example Hierarchical Workflow
§  <dax> element behaves like <job>

–  Arguments are for pegasus-plan (most are inherited)

§  Planner is invoked when DAX job is ready to run
<?xml version="1.0" encoding="UTF-8"?>
<adag version="3.4" name="multi-level">

<job id="ID0000001" namespace="example" name="sleep">
<argument>5</argument>

</job>
<dax id="ID0000002" file="sub.dax">

<argument>--output-site local</argument>
</dax>
<job id="ID0000003" namespace="example" name="sleep">

<argument>5</argument>
</job>
<child ref="ID0000002">

<parent ref="ID0000001"/>
</child>
<child ref="ID0000003">

<parent ref="ID0000002"/>
</child>

</adag>

60

Integration with HUBzero

Credit: Frank McKenna UC Berkeley, NEES, HUBzero

61

Key Pegasus Concepts

§  Workflows are DAGs (or hierarchical DAGs)
–  No loops, no conditional branches

§  Pegasus WMS == Pegasus planner (mapper) + DAGMan
workflow engine + Condor scheduler
–  The planner does not schedule jobs

§  Planning occurs ahead of execution
–  (Except hierarchical workflows)

§  Planning converts an abstract workflow into a concrete,
executable workflow
–  Planner is like a compiler

62

§  Montage Galactic Plane Workflow
–  18 million input images (~2.5 TB)
–  900 output images (2.5 GB each, 2.4 TB total)
–  10.5 million tasks (34,000 CPU hours)
–  Run on Amazon EC2 2013-2014

§  Need to support hierarchical workflows and scale

John Good (Caltech)

Data-intensive Workflows

63

Workflow Application: CyberShake

§  What will peak ground motion be over the next
50 years?
–  Used in building codes, insurance, government, planning
–  Answered via Probabilistic Seismic Hazard Analysis (PSHA)
–  Communicated with hazard curves and maps

Hazard curve for downtown LA

2% in 50 years

0.6 g

Probability of exceeding 0.1g in 50 yrs

64

Seismic Hazard Analysis Calculation

§  Tensor simulation
–  Create 1.5 billion point mesh with material properties
–  Generate tensors across volume
–  Parallel, ~8,000 CPU-hrs

65

Post-Processing

§  Individual earthquake contributions
–  Get list of earthquakes of interest (~415,000)
–  Simulate seismograms for each earthquake
–  Loosely-coupled, short-running serial jobs

§  Combine the levels of shaking with probabilities to
produce a hazard curve.

66

Computational Requirements

Component Data Executions Cores/exec Core hours

Mesh generation 15 GB 1 320 50

Tensor simulation 40 GB 2 10,000 CPU
100 GPU

16,000 CPU
1,200 GPU

Tensor extraction 690 GB 6 256 275

Seismogram
synthesis

12 GB 415,000 1 2,300

Curve generation 1 MB 1 1 < 1

Total 757 GB 415,000 18,625

Tensor
Creation

Post
Processing

This is for one location of interest; we wanted to run ~1000

67

Why Scientific Workflows?

§  Large-scale, heterogeneous, high throughput
–  Parallel and many (~415,000) serial tasks
–  Task duration 100 ms – 2 hours

§  Automation
§  Data management

§  Error recovery
§  Resource provisioning
§  Scalable

§  System-independent description

68

CyberShake workflows

Tensor
extraction

Seismogram
synthesis

Seismogram
synthesis

Tensor
extraction

Tensor
simulation .

.

.

x6 x415,000 x1

Seismogram
synthesis

Mesh
generation

Tensor Workflow

x1 x2

Post-Processing Workflow

.

.

.

Hazard
Curve

69

Challenge: Resource Provisioning

§  In tensor workflow, submit job to remote scheduler
–  GRAM puts jobs in remote queue
–  Runs like a normal batch job
–  Can specify either CPU or GPU nodes

§  For post-processing workflow, need high throughput
–  Putting lots of jobs in the batch queue is ill-advised

•  Scheduler isn’t designed for heavy job load
•  Scheduler cycle is ~5 minutes
•  Policy limits too

§  Solution: Pegasus-mpi-cluster (PMC)

70

Challenge: Data Management

§  Millions of data files
–  Pegasus provides staging

•  symlinks files if possible, transfers files if needed
•  Supports running parts of workflows on separate machines

–  Transfers output back to local archival disk
–  Pegasus registers data products in catalog
–  Cleans up temporary files when no longer needed

§  Directory hierarchy to reduce files per directory
§  Added automated checks to check integrity

–  Correct number of files, NaN, zero-value checks
–  Included as new jobs in workflow

71

Challenge: File System Load

§  Seismogram tasks cause heavy I/O load
–  Reads an earthquake description
–  Writes a seismogram file

§  Reduce reads
–  Generate earthquake description on the fly, from geometry
–  Added memcached to cache rupture geometry

•  Local memory cache on compute node
•  Pegasus-mpi-cluster hook for custom startup script

§  Reduce writes
–  Pegasus-mpi-cluster supports “pipe forwarding”
–  Workers write to pipes, master aggregates to fewer files

72

CyberShake Study 14.2

§  Hazard curves for 1144 sites
§  46,720 CPUs + 225 GPUs for 14 days (Blue Waters)

–  Peak of 295,040 CPUs, 1100 GPUs

§  99.8 million tasks executed
–  81 tasks/sec
–  Only 31,463 jobs in Blue Waters queue

§  On average, 26.2 workflows running concurrently
§  Managed 830 TB of data

–  57 TB output files
–  12.3 TB staged back to local disk (~16M files)

§  Workflow tools scale!

