
Scientific Workflows with Pegasus
WMS

Gideon	
 Juve	

	

Science	
 Automa1on	
 Technologies	
 Group	

USC	
 Informa1on	
 Sciences	
 Ins1tute	

2

Common Workflow Challenges

§  Portability
–  Can you run a pipeline on Amazon EC2 one day, and a PBS cluster

the next?
§  Performance and Scalability

–  How can you manage large workflows with thousands of tasks and
TBs of files?

§  Data Management
–  What about complex data flows across multiple sites?

§  Provenance
–  Can you go back and find out how and where data was produced?

§  Reliability
–  How do you handle failures and retries?

§  Monitoring and Troubleshooting
–  If something fails, can you identify the problem quickly (at all)?

3

Pegasus Workflow Management System (WMS)

§  Under development since 2001
§  A collaboration between USC/ISI and the Condor

Team at UW Madison
–  USC/ISI develops Pegasus planner
–  UW Madison develops DAGMan and Condor

§  Used by many applications in a variety of domains
–  Earth science, physics, astronomy, bioinformatics

4

Parameter
Values

Equlibrate
Stage

Production
Stage

Filtering

Coherent Incoherent

Post-processing
and Viz

Amber14Amber14Amber14

Example: SNS Parameter Refinement

§  Spallation Neutron Source at ORNL
§  Parameter sweeps of MD and

neutron scattering simulations
–  Fit simulation to experimental data
–  e.g. temperature, charge, force

§  Nanodiamond Workflow
–  Feb 2015 on Hopper using GRAM and

GridFTP
–  19 parameter values for nonbonded

interactions between ND and H20
–  800 core NAMD jobs x 22 hrs
–  400 core Sassena jobs x 3 hrs
–  ~380,000 CPU hours
–  ~1/2 TB output

5

Example: Periodogram Exoplanet Workflow

•  Kepler continuously monitors the
brightness of over 175,000 stars
•  Search for periodic dips in signals as

Earth-like planets transit in front of host
star.

•  For each star, Kepler data is used
to create a “light curve”

•  Need to perform a bulk analysis of
all the data to search for these
periodic signals

Kepler 6-b transit

2012 Run at SDSC
•  1.1M tasks, 180 jobs
•  1.1M input, 12M output files
•  ~101,000 CPU hours
•  16 TB output data

6

§  Montage Galactic Plane Workflow
–  18 million input images (~2.5 TB)
–  900 output images (2.5 GB each, 2.4 TB total)
–  10.5 million tasks (34,000 CPU hours)
–  Run on Amazon EC2 2013-2014

§  Need to support hierarchical workflows and scale

John Good (Caltech)

Example: Montage Image Mosaics

7

2014: 286 Sites, 4 models
§  Each site = one workflow
§  Each workflow has 420,000 tasks in 21

jobs using task clustering w/ PMC
§  NCSA BlueWaters, TACC Stampede

²  Builders ask seismologists: “What will the peak ground

motion be at my new building in the next 50 years?”
²  Seismologists answer this question using Probabilistic

Seismic Hazard Analysis (PSHA)

Example: CyberShake PSHA Workflow

Check-
SGTGen-X

Check-
SGTGen-Y

• • •

Update
Run Manager

MPI
Extract

seismogram_
psa

• • •

Seismogram Workflow 8

seismogram_
psa

seismogram_
psa

PMC Clustered Job

1 - 53000

Runs on XSEDE Site

Runs On
XSEDE Sites

Runs Locally

Runs Locally

One Post Processing Workflow
Per Site Per SGT Pair

Check_DB_Site

Notify

Load_Amp

DB_Report Curve_Calc

Diasaggregate

DB Population Workflow

MPI
Extract

seismogram_
psa

• • •

Seismogram Workflow 1

seismogram_
psa

seismogram_
psa

PMC Clustered Job

1 - 53000

Update
Run Manager

Runs Locally

8

Why use Pegasus?

§  Maps abstract workflows to diverse computing infrastructure
–  Desktop, Condor Pool, HPC Cluster, Grid, Cloud

§  Supports large-scale, data-intensive workflows
–  Experience up to O(1M) tasks and O(10TB) of data

§  Automatically plans and executes data transfers
–  Supports complex data flows

§  Manages failures to provide reliability
–  Including retries, checkpointing and re-planning

§  Provides tools to allow users to monitor and troubleshoot large
workflows

§  Technical support
–  Funding to support users, mailing lists, chat room, public bug tracker,

open source, regular releases, decent documentation

9

Key Pegasus Concepts

§  Pegasus WMS == Pegasus planner (mapper) + DAGMan
workflow engine + Condor scheduler/broker
–  Pegasus maps workflows to infrastructure
–  DAGMan manages dependencies and reliability
–  Condor is used as a broker to interface with different schedulers

§  Workflows are DAGs (or hierarchical DAGs)
–  Nodes: jobs, edges: dependencies
–  No while loops, no conditional branches

§  Planning occurs ahead of execution
–  (Except hierarchical workflows)

§  Planning converts an abstract workflow into a concrete,
executable workflow
–  Planner is like a compiler

10

Pegasus Workflows are Directed Acyclic Graphs

§  Nodes are tasks
–  Typically, executables with arguments
–  Nodes can also be other workflows

§  Edges are dependencies
–  Represent data flow
–  Can also be control dependencies
–  Pegasus can infer edges from data use

§  No loops, no branches
–  Recursion is possible
–  Can generate workflows in a workflow
–  Can conditionally skip tasks with wrapper

B B

D

A

B B

C C C C

11

Pegasus WMS

API Interfaces

Portals

Other Workflow
Composition

Tools: Grayson,
Triana, Wings

Pegasus WMS

Mapper

Engine

Scheduler

Users

Distributed Resources
Campus Clusters, Local Clusters, Open Science Grid, XSEDE

GRAM
P
B
S

LSF SGE

C
O
N
D
O
R

STORAGECOMPUTEMIDDLEWARE

Cloudware
OpenStack

 Eucalyptus, Nimbus

GridFTP

HTTP

FTP

SRM

IRODS

Storage

SCP

Compute
 Amazon EC2, RackSpace,

FutureGrid

Workflow
DB

Monitoring

Logs

Notifications

S3

Clouds

12

Abstract to Executable Workflow Mapping

§  Abstraction provides
–  Ease of Use (do not need to

worry about low-level
execution details)

–  Portability (can use the same
workflow description to run on
a number of resources and/or
across them)

–  Gives opportunities for
optimization and fault
tolerance

•  automatically restructure
the workflow

•  automatically provide
fault recovery (retry,
choose different
resource)

General Workflow Execution Model

•  Input	
 Data	
 Site,	
 Compute	
 Site	
 and	
 Output	
 Data	
 Sites	
 can	
 be	
 co-­‐located	

–  Example:	
 Input	
 data	
 is	
 already	
 present	
 on	
 the	
 compute	
 site.	

•  Most	
 of	
 the	
 tasks	
 in	

scien1fic	
 workflow	

applica1ons	
 require	

POSIX	
 file	
 seman1cs	

–  Each	
 task	
 in	
 the	

workflow	
 opens	
 one	
 or	

more	
 input	
 files	

–  Read	
 or	
 write	
 a	
 por1on	

of	
 it	
 and	
 then	
 close	
 the	

file.	

14

Staging Site

Data Staging Configurations

§  Worker nodes and the head node have a
shared filesystem, usually a parallel
filesystem with high-performance I/O

§  Can leverage symlinking against pre-
staged datasets

§  Staging site is the compute site

Submit
Host

Compute Site

Shared
FS

WN

WN
(e.g. your laptop)

Shared File System (typical of XSEDE and HPC sites)

Non-shared File System (typical of OSG and EC2)

§  Worker nodes don’t share a file system
§  Uses a staging site separate from the

compute site such as Amazon S3
§  Data is pulled from / pushed to the

staging site Compute Site

Submit
Host

Storage
Server

WN

WN

Jobs
Data

15

Data Staging Configurations

§  Worker nodes don’t share a file system
§  Data is pulled from / pushed to the

submit host via Condor file transfers
§  Staging site is the submit host

Using Pegasus allows you to
move from one configuration
to another without changing
the workflow description

Condor I/O (Typical of Condor Pools like OSG sites)

Submit
Host

Local FS

Compute Site

WN WN
Jobs
Data

•  Amazon S3
•  SRM
•  cp
•  ln -s

•  Supports many different protocols

•  HTTP
•  SCP
•  GridFTP
•  IRODS

16

Workflow Reduction (Data Reuse)

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.
Reuse it.
Mark Jobs D and B to delete

Delete Job D and Job B

Done automatically when output files are discovered in replica catalog.
Useful when you have done a part of computation and then realize the
need to change the structure.

17

Data Cleanup

§  Problem: Running out of disk space during workflow execution

§  Why does it occur
–  Workflows could bring in large amounts of data
–  Data is generated during workflow execution
–  Applications don’t clean up after they are done

§  Solution
1.  Do cleanup after workflows finish

•  Cleanup is last job in the workflow
2.  Interleave cleanup automatically during workflow execution

•  Analyze the workflow to determine when a file is no longer required
–  Cluster the cleanup jobs by level for large workflows

Example: Used by a UCLA genomics researcher to delete TB’s of
intermediate data automatically during long running workflows

18

Data Cleanup Example

Use the --cleanup option for pegasus-plan
•  “none” for no cleanup
•  “inplace” to clean up as soon as possible
•  “leaf” to clean up at the end of the workflow

Montage 1 degree workflow run with cleanup

19

Task Clustering

§  Cluster small running jobs together to achieve better
performance

§  Why?
–  Each job has scheduling overhead – need to make this overhead

worthwhile
–  Ideally users should run a jobs that take at least 10/30/60/? minutes
–  Clustered tasks can reuse common input data – less data transfers

Horizontal clustering

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

cluster_2cluster_1

B B

D

A

B B

C C C C

Label-based clustering

Also: time-based clustering

20

Workflow Monitoring and Reporting

§  Data collection
–  Data extracted from log files and stored in a relational database
–  DB contains workflow structure, status information, runtimes, host

info, task stdout/stderr

§  Reporting tools
–  Status of the workflow

•  pegasus-status path/to/submit/directory
–  Detailed runtime statistics

•  pegasus-statistics -s all path/to/submit/directory

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002
Jobs 4529 0 0 4529 0 4529
Sub-Workflows 2 0 0 2 0 2
--

Workflow wall time : 13 hrs, 2 mins, (46973 secs)
Workflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

21

Pegasus Dashboard
§  Web-based workflow monitoring GUI

–  Data comes from monitoring database
–  Supports monitoring, troubleshooting, and reporting

Dashboard

Workflow Details

Job Details

22

Other Features

§  Hierarchical Workflows
§  Pegasus-MPI-Cluster
§  Troubleshooting tools (pegasus-analyzer)

§  Workflow and Task Notifications
§  Job and Transfer Throttling

§  Executable Staging
§  Task Profiling via Kickstart
§  Multi-site execution

§  Shell Planner Mode

23

Workflow Infrastructure Requirements

1.  A place to run
–  We call this the “submit host”
–  Needs to have reasonable uptime while running workflows
–  Policy may prevent us from using the cluster head node
–  Needs to have network access for job and data management
–  e.g. head node at USC, VM at OLCF, workflow.isi.edu

2.  An interface for submitting jobs
–  Needs to be automatic: no manual RSA tokens for 2 factor auth
–  Needs to be fairly robust

3.  A way to transfer data
–  Needs to get data into and out of scratch and project storage
–  High performance

§  Nice to have
–  Good infrastructure monitoring and testing

24

Summary – What Does Pegasus provide an Application

§  Portability / Reuse
–  User created workflows can be run in different environments

without alteration.

§  Performance
–  The Pegasus mapper can reorder, group, and prioritize tasks in

order to increase the overall workflow performance.

§  Scalability
–  Pegasus can easily scale both the size of the workflow, and the

resources that the workflow is distributed over. Pegasus runs
workflows ranging from just a few computational tasks up to 1
million.

25

Summary – What Does Pegasus provide an Application

§  Provenance
–  Provenance data is collected in a database, and the data can be

summaries with tools such as pegasus-statistics, Pegasus
Dashboard, or directly with SQL queries.

§  Data Management
–  Pegasus handles replica selection, data transfers and output

registrations in data catalogs. These tasks are added to a
workflow as auxilliary jobs by the Pegasus planner.

§  Reliability
–  Jobs and data transfers are automatically retried in case of

failures. Debugging tools such as pegasus-analyzer help the
user to debug the workflow in case of non-recoverable failures.

26

More Information

§  Website:
–  http://pegasus.isi.edu

§  Tutorial:
–  http://pegasus.isi.edu/wms/docs/latest/tutorial.php

§  Documentation:
–  http://pegasus.isi.edu/documentation

§  Contact:
–  Pegasus users list (public): pegasus-users@isi.edu
–  Pegasus support (private): pegasus-support@isi.edu

27

Pegasus-MPI-Cluster

§  A master/worker task scheduler for running fine-grained
workflows on batch systems

§  Runs as an MPI job
–  Uses MPI to implement master/worker protocol

§  Works on most HPC systems
–  Requires: MPI, a shared file system, and fork()

§  Allows sub-graphs of a Pegasus workflow to be
submitted as monolithic jobs to remote resources

Master	

(rank	
 0)	

Worker	

(rank	
 1-­‐N)	

