Introduction to Scientific Workflows
and Pegasus

Karan Vahi

Science Automation Technologies Group
USC Information Sciences Institute

USC \fltefbl Information Sciences Institute

School of Eng

Outline

* Introduction to Scientific Workflows and Pegasus

* Running Workflows through Pegasus
— Composition
— Submission
— Monitoring
— Debugging

= Advanced Features
— Data Cleanup
— Data Reuse
— Hierarchal Workflows
— Job Clustering

USC \fltefbl 2 Information Sciences Institute

School of Eng

Scientific Workflows

= Orchestrate complex, multi-stage scientific computations
= Often expressed as directed acyclic graphs (DAGSs)
= Capture analysis pipelines for sharing and reuse

= Can execute in parallel on distributed resources

Setup 4
Split {

Filter &

Convert
Merge {

Analyze {

USC Viterbi

School of Engineering

Workflows can be simple!

USC Vlterb1 |

»ol of Eng

USC RNASEQ EXPRESSION ESTIMATION WORKFLOW
Workflow Developed By: Rajiv Mayani USC/ISI and Jennifer Herstein USC HSC

GENCODE_V14_annotation.gtf ucsc_gencode.v14_transcripts.fa ‘ SEPL600_1_CGATGT_L008_R1.fastq |

I I
u | ucsc_gencode.v14_transcripts.rev. u

| [prefix]_chrList_gtf.txt | ‘ [prefix]_without_genome.txt ‘ ‘ucsc_gencode.w4_1ranscriptsA[1-4]Ab!2 [1-2].bt2 |[prellx]_SEPL600_1_CGATGT_LOOB_RHastq

Some workflows
are structurally
complex and can
use large
amounts of data.

| [prefix]_Bowtie2_transcriptome.sam |

get_reads_mapping_info
‘ [prefix]_chrList. txt
refix]_chrList_sam.|
| [prefix]_chr[1-24] alignment.sam i - —

[prefix]_chr[1-24]_annotation.gtf

L Chromosome 2

Chromosome 1
prefix_mapping_info.log

R

prefix_ExonCombination_chr[1].txt I | prefix_JunctionCombination_chr{1].txt /[

sam_split_evenly_randomly:1.0
|~
prefix_chr[1]_reads_multiGene.txt

’ prefix_Exonindex_chr{1].txt I ’ prefix_chr[1]_unigGene.sam ‘ Iprelix_Jundionlndsx_chn ,!xl‘

unique::exon_expression_level:1.0 inction_expression_level:1.0

pre!ix_chrﬂ]_GeneExpressionLeveI_unique.b(lI | prefix_chr{1]_ExonExpressionLevel_unique.txt ‘ | prefix_chr{1]_JunctionExpressionLevel_unigue.txt

|

4 l

1 er 1 prefix_whole_GeneExpressionLevel_unique.txt | | prefix_whole_ExonExpressionLevel_unique.txt prefix_whole_JunctionExpressionLevel_unique.txt

School of Engineering

Montage Galactic Plane Workflow

Some workflows are large-scale
and data-intensive

] John Good (Caltech)
= Montage Galactic Plane Workflow

— 18 million input images (~2.5 TB)
— 900 output images (2.5 GB each, 2.4 TB total) p 4 1 7
— 10.5 million tasks (34,000 CPU hours)

= Need to support hierarchical workflows and scale

USCV1terb1

School of Eng

Some workflows couple large-scale simulations
with data analysis

117"
|

CyberShake PSHA Workflow

<> Builders ask seismologists: “What will the peak ground
motion be at my new building in the next 50 years?”

< Seismologists answer this question using Probabilistic
Seismic Hazard Analysis (PSHA)

One Post Processing Workflow (. Jhee Runs Locally
Per Site Per SGT Pair

-119° -118.5" -118" -117.5"
——

34.5°

34"

Runs on XSEDE Site

Check- Check-
SGTGen-X SGTGen-Y,

PMC™_Clustered Job

0.2 0.4 0.6 0.8 1.0 _
CyberShake Hazard Map, 3sec SA, 2% in 50 yrs s - i '~ t-ss000 m)
2014: 286 Sites, 4 models
\Seismogram Workflow 1 / XSREUSE grt, \Seismogram Workflow 8
= Each site = one workflow /\ /\

= Each workflow has 420,000 tasks in 21
jobs

Runs Locally

____ DB Population Workflow /

USCViterbi

School of Engineering @ Runs Locally
= - Run Manager

Why Scientific Workflows?

= Automate complex processing pipelines

= Support parallel, distributed computations
= Use existing codes, no rewrites

= Relatively simple to construct

= Reusable, aid reproducibility

= Can be shared with others

= Capture provenance of data

USC V1terb1 |

School of Eng

Scientific Workflow Challenges

= Portability

- How?can you run a pipeline on Amazon EC2 one day, and a PBS cluster the
next"

= Data Management

— How do you ship in the small/large amounts data required by your pipeline?

— Different protocols for different sites: Can | use SRM? How about GridFTP?
HTTP and Squid proxies?

— Can | use Cloud based storage like S3 on EC27?

= Debug and Monitor Computations.
— Users need automated tools to go through the log files
— Need to correlate data across lots of log files
— Need to know what host a job ran on and how it was invoked

= Restructure Pipelines for Improved Performance
— Short running tasks?
— Data placement?

USC V1terb1 |

School of Eng

Pegasus
Workflow Management System (est. 2001)

A collaboration between USC and the Condor Team at UW
Madison (includes DAGMan)

Maps a resource-independent “abstract” workflow onto
resources and executes the “executable” workflow

Used by a number of applications in a variety of domains

Provides reliability—can retry computations from the point of
failure

Provides scalability—can handle large data and many
computations (kbytes-TB of data, 1-10° tasks)

Infers data transfers, restructures workflows for performance
Automatically captures provenance information

Can run on resources distributed among institutions, laptop,
campus cluster, Grid, Cloud

USC V1terb1 |

School of Eng

Pegasus WMS Environment

Users

API Interfaces

python ((
=

1,

hubzero\-.o

Other Workflow
Composition
Tools: Grayson,
Triana, Wings

USC Viterbi

School of Engineering

Clouds
Pegasus WMS
Cloudware
OpenStack
Eucalyptus, Nimbus
Mapper
[Engine
Compute
y Scheduler Amazon EC2, RfackSpace,
Notifications| Monitoring ’ 7 FutureGrid
» / Logs
N 4
Distributed Resources
Campus Clusters, Local Clusters, Open Science Grid, XSEDE
GRAM || o
-
BRI ==
R
MIDDLEWARE COMPUTE STORAGE

Pegasus Workflow Management System

= Abstract Workflows - Pegasus input workflow
description

— Workflow “high-level language”

— Only identifies the computation, devoid of resource des
devoid of data locations

— File Aware

= Pegasus is a workflow “compiler” (plan/map
— Target is DAGMan DAGs and Condor submit files

— Transforms the workflow for performance and reliability

— Automatically locates physical locations for both workflow
components and data

— Collects runtime provenance

USCV1terb1 |

School of Eng

DAX — XML format to describe Abstract Workflows

<?xml version="1.0" encoding="UTF-8"7>
<adag version="3.4" name="hello-world"” index="0" count="1">

<!-- Section: Job's, DAX's or Dag's - Defines a JOB or DAX or
DAG (Atleast 1 required) -->

<job id="jl1" namespace="pegasus"” name="hello" version="4.0">
<argument>-a hello -T 60 -i <file name="f.a"/>
-0 <file name="f.b"/>
</argument>
<uses name="f.a" link="input"” transfer="true"
register="true"/>
<uses name="f.b" link="output” transfer="false"
register="false"/>
</job>

<job id="j2" namespace="pegasus"” name="world" version="4.0">
<argument>-a world -T 60 -i <file name="f.b"/>
-0 <file name="f.c"/>
</argument>
<uses name="f.b" link="input"” transfer="true"
register="true"/>
<uses name="f.c" link="output” transfer="false"
register="false"/>

</job>
<!-- Section: Dependencies - Parent Child relationships (can be
empty) -->

Abstract Workflow RAT ey

<parent ref="j1"/>

\[itel‘b </child>

School of Engineg </ada g>

Abstract to Executable Workflow Mapping - Discovery

= Data

— Where do the input datasets
reside? |

= Executables

— Where are the executables
installed ?

— Do binaries exist somewhere
that can be staged to remote
grid sites? |

= Site Layout

— What does a execution S|te
look like? |

Abstract Workflow

Executable Workflow

4 Replicai Catalog

Transformation

Catalog

M

Site Ca:talog

USC Vlterb1 |

»ol of Eng

How does Pegasus view a compute resource as?

= For Pegasus a compute resource or a site is associated with the
following
— An entry point or a scheduler contact to submit jobs to e.g PBS/LSF/Condor
— File servers to stage data to the cluster

— Different types of directories on the site
« Shared-scratch - shared across all the worker nodes in the site
* Local — a directory/filesystem local to the node where a job executes

— Site wide information like environment variables to be set when a job is
run. 0SG HPC Cluster b

Input Data Site

F.in

Output Data Site

F.out

;

LEGEND
— Remotel0 ----- » POSIX 10

USCViterbi

School of Engineering

Site Catalog

= Stores details about each target execution/storage site

Job submission endpoints (GRAM URL, etc.)

Paths to storage/scratch directories

Data transfer services (GridFTP servers, etc.)

Paths to credentials (X509 proxy, ssh key, etc.)
Site-level configuration (environment variables, etc.)
“local” site is special—refers to submit host

<l-- Example site catalog -->
<sitecatalog>
<site handle="example" arch="x86_64" os="LINUX">
<grid type="gt5" contact="example.isi.edu/jobmanager-fork” jobtype="auxillary"/>
<grid type="gt5" contact="example.isi.edu/jobmanager-pbs” jobtype="compute"/>
<directory type="shared-scratch" path="/scratch">
<file-server operation="all" url="gsiftp://example.isi.edu/scratch"/>

</directory>
<profile namespace="env" key="GLOBUS_LOCATION">/usr/local/globus</profile>
<profile namespace=“pegasus” key=“style”’>globus</profile>
<profile namespace=“pegasus” key=“X509_USER_PROXY”’>/tmp/x509_u40001</profile>

</site>

</sitecatalog>

USCViterbi

School of Engineering

Transformation Catalog

= Maps transformations to executables on each site

— Physical path or URL of executable and dependent data/
configuration files
— Executable characteristics (OS, architecture, glibc, etc.)

— Job-level configuration (e.g. environment variables, profiles)

Example transformation catalog
tr example::date {

profile env ”TZ" ”America/Los_Angeles”

site example {
pfn "/bin/date"
os "linux"
arch "x86_64"
type "INSTALLED"

}
}

USC V1terb1 |

School of Eng

Replica Catalog

* Maps logical files to physical files
— LFN (name) to PFN (path or URL)
— Mappings annotated with metadata (e.g. site/pool, size, etc.)

= Enables Pegasus to choose “best” replica (replica
selection phase of planner)

= Where Pegasus registers workflow output locations

= Support file-based or DB-based RC (also callout)

Example replica catalog
f.1 gsiftp://lexample.isi.edu/inputs/f.1 pool="example”

f.1 file:/llinputs/f.1 site="example”
f.2 file:///inputs/f.2 site="example”
f.2 file:///inputs/f.2 site=“local”

USCV1terb1 |

School of Eng

Abstract to Executable Workflow Mapping

= Abstraction provides

— [Ease of Use (do not need to
e worry about low-level
execution details)
— Portability (can use the same
workflow description to run on

a number of resources and/or
across them)

— Gives opportunities for
LEGEND optimization and fault
tolerance

« automatically restructure
the workflow

O Unmapped Job

- @@+

’ Compute Job
mapped to a site

f.c () stage-in Job - automatically provide
fault recovery (retry,
@ stage-Out Job choose different
Abstract Workflow . Registration Job resource)
@ Make Dir Job
Executable Workflow ‘ Cleanup Job

USCViterbi

School of Engineering

General Workflow Execution Model

(A
F.in Compute Site 1 .
nputpatasite | © Most of the tasks in
scientific workflow
I 1 | licats :
e . SELUE applications require
. 11 POSIX file semantics
: | ‘A Eint . .
F.int
/ N O — Each taskin the
. IW°'ke' Node | workflow opens one or
° /\ ‘ p “s,, | DataStaging Site more input files
/ p . [— Read or write a portion
+ /' Compute Site 2 *t F.int ‘ of it and then close the
F.out / 3 ’,"‘ file.
* F —l=* e Data Staging Site can
-- Fint
/ /e —T Output Data Site be the shared
Submit Host S A Fout ol 4 | ———— filesystem on the
Workflow]|~ Worker Node] rout ‘ compute cluster!
Management L
System
N J
< «—— —p Task Flow ------- - Data Flow

* Input Data Site, Compute Site and Output Data Sites can be co-located

— Example: Input data is already present on the compute site.

USCViterbi

School of Engineering

Supported Data Staging Approaches - |

Shared Filesystem setup (typical of XSEDE and HPC sites)

= Worker nodes and the head node have gﬁgt':f e
a shared filesystem, usually a parallel | zm\-
filesystem with great 1/O characteristics | Submit < W

s L - Host
= Can leverage symlinking against -
existing datasets pc-pegasus

= Staging site is the shared-fs.

Compute Site

Non-shared filesystem setup with staging site (typical of OSG and EC 2)

= Worker nodes don’t share a filesystem.
» Data is pulled from / pushed to the Submit

e Staging
existing storage element. Host W

= A separate staging site such as S3 Compute Site| Amazon
EC2 with S3

Jobs — s
Data --------- >

USCV1terb1 |

School of Eng

Supported Data Staging Approaches - I

Condor 10 (Typical of large Condor Pools like CHTC)

= Worker nodes don’t share a filesystem
= Symlink against datasets available locally

= Data is pulled from / pushed to the
submit host via Condor file transfers

= Staging site is the submit host. Jobs — >

Supported Transfer Protocols

= HTTP

= SCP

= GridFTP

= |RODS

= S3

= Condor File 10
= File Copy

USC V1terb1 |

Submit
Host

Local FS

A A

i i

Compute Site

School of Eng

Simple Steps to Run Pegasus

1. Specify your computation in terms of DAX
— Write a simple DAX generator
— Python, Java , Perl based API provided with Pegasus

2. Set up your catalogs
— Replica catalog, transformation catalog and site catalog.

3. Plan and Submit your workflow

— Use pegasus-plan to generate your executable workflow that is
mapped onto the target resources and submits it for execution

4. Monitor and Analyze your workflow

— Use pegasus-status | pegasus-analyzer to monitor the execution of
your workflow

5. Workflow Statistics

— Run pegasus-statistics to generate statistics about your workflow run.

USC V1terb1 |

School of Eng

Different Directories used by Pegasus

1. Submit Directory

— The directory where pegasus-plan generates the executable workflow i.e
HTCondor DAGMan and job submit files.

— Specified by --dir option to pegasus-plan

2. Input Directory

— Mostly input file locations are catalogued in the Replica Catalog.
— However, if inputs are on the submit host, then you can pass —input-dir

option to pegasus-plan
3. Scratch Directory

— Workflow specific directory created on the staging site by the create-dir
job. This is where all the workflow inputs and outputs are gathered.

— The base directory specified in the site catalog entry in sites.xml file.

4. Output Directory
— The output directory where the outputs of the workflow appear.
— Specified in the output site entry in the sites.xml file.
— Can also be optionally specified by —output-dir option to pegasus-plan

USCViterbi

School of Engineering

Workflow Monitoring - Stampede

= Leverage Stampede Monitoring framework with DB backend

— Populates data at runtime. A background daemon monitors the logs files and
populates information about the workflow to a database

— Stores workflow structure, and runtime stats for each task.

= Tools for querying the monitoring framework

— pegasus-status
Status of the workflow

— pegasus-statistics
Detailed statistics about your finished workflow

Type Succeeded Failed 1Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002

Jobs 4529 0 0 4529 0 4529

Sub-workflows 2 0 0 2 0 2

workflow wall time : 13 hrs, 2 mins, (46973 secs)
wWorkflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)

Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

USC Viterbi

School of Engineering

Workflow Debugging Through Pegasus

= After a workflow has completed, we can run pegasus-
analyzer to analyze the workflow and provide a summary
of the run

= pegasus-analyzer's output contains

— a brief summary section
« showing how many jobs have succeeded
« and how many have failed.

— For each failed job
« showing its last known state
« exitcode
» working directory
 the location of its submit, output, and error files.
 any stdout and stderr from the job.

USC V1terb1 |

School of Eng

Workflow Monitoring Dashboard: pegasus-dashboard

= A python based online workflow dashboard
— Uses the FLASK framework

— Beta version released in 4.2
— Queries the STAMPEDE database

= Lists all the user workflows on the home page and are color
coded.
— Green indicates a successful workflow,
— Red indicates a failed workflow
— Blue indicates a running workflow

= Explore Workflow and Troubleshoot (Workflow Page)
— Has identifying metadata about the workflow
— Tabbed interface to
« List of sub workflows
« Failed jobs
* Running jobs
» Successful jobs.

USC V1terb1 |

School of Eng

Workflow Monitoring Dashboard

%0 SpoBUaZ.SUgaLpIY.SYEa
45 spice091.sugar.phy.syr.edu
44 $ICR047.5ugar phy.syr.edu
43 5Ic081.5ug

42 5Ugar073 sugar.phy.
41 spice156.sugar.phy.syr.edu
40 spice106.sugar.phy.syr.edu
39 $pICR0B4.5Ugar pNy.syr.edu
38 sugar016.sugar.phy.syr.edu
37 spice028.sugar.phy.syr.edu
36 spice015.sugar.phy.syr.edu
35 spice164.sugar.phy.syr.edu
34 5IcR041.5ugar phy.syr.edu
33 spice027.sugar.phy.syr.edu
32 spice025.sugar.phy.syr.edu

000!

30 sUgaro06.sugar.phy.syr.edu
29 5p/cR088.5ugar.p

28 5Ugar08.su
27 sugar044 sugar.phy.
26 5pice068.sugar.phy.syr.edu
25 spice129.5ugar.phy.syr.edu
24 5pice109.5ugar.pny.syr.edy
23 5IcR050.5ugar.pny.syr.edu
22 spice070.sugar.phy.syr.edu
1050,

Host Chart

(WL [

20 spice075.sugar.phy.syr.edu

19 5ugarD18.sugar phy.syr.edu
18 spice110.5ugar.phy.syr.edu
17 sugar023.sugar.phy.syr.edu
sugarphy.syr.edu
sugar.phy.syr.edy
5.5ugarhy.syr.edu
13 $pice160.5ugar.phy.syr.edu
4 sugar.phy.syr.edu

11 5pice0s5 sugar.phy.syr.edu
10 spioe53.sugar.phy.syr.edu

5 spice147.5ugar.phy.syr.edu
4 spico054,

3 sugaros4.sugar.phy.syr.edu
2 spioe150.sugar.phy.syredu
10002,

o 2,000 4,000
Timeline in seconds -->
‘condor job
1go:1aiapps._sre:1.0
@ igo:aapps_core:1.0

6,000

® rosourco doay
© igo:iaiapps.tigoanc1.0
Iigo::ialapps_inspin}:1.0

8000 10,000 12000 14,000 16,000 18,000
@ oo untme
igo::aiapps. thinca:1. igotialapps_insplal:1.0

@ pegasusipegasustranster

20,000

x

Charts - Google Chrome.

s WA
€ © @ @ [bambooisiedu:s000/ro0t/7080Mmorkflow/1/charts.

A | Workflow | Charts

ereate_di_gp_0_c |

create_dr_gp_0_ocal |
stage_in_remote_cc6_00 |l
stage_n_remote_cc6_01 |
stage_n_remote_cc6_3.0 | M
stage_in_ocal loca 10 | |
stage_n_locallocd 1.1 | |
chmod_remote_tie_setup_is-tie_00045_-00045_0
Ghod_remote_extra_cleanup_res-tle_0004500045_0
Temute_te_selup_ts-tle_00045_-00045
remute_tie_setup_ts-tle_-00045_-00045

stage_out_local CCG_0_0

stage_iner_local local_tle_setup_fs-tle_00045 00045 0
ocal_tie_setup_ ts-tle_00045_-00045
Subdax_tle_00045_-00045_Sub-tle_00045_-00045

stage_out_local CCG_0_1

Gantt Chart

Workflow Execution Gantt Chart

Invocation Distribution by Count

A ——
I et e et
pegasuscrc-client [

| dagmancpre: 2
\ / gpciocal_sie_seup1.0: 2
apremote_exta_cleanup:L:
X, premon_seseup: 2
mAE33: 2
mBackground3.3: 195
mimgo33: 2
P moias: 2
mConcatits.3: 2

remte_extra_cleanup_ec-tle_-00045_-00045

| Fefote SHtra A Fec- e 00045 00045 T

i ds -->

ime in secon

Runt

400,000

350,000

300,000

250,000

200,000

150,000

100,000

A | Workflow | Statistics

‘ - Workflow Statistics

‘Workflow Wall Time
Workflow Cumulative Job Wall Time
‘Cumulative Job Walltime as seen from Submit Side
Workflow Retries

1 min 12 secs
0 secs
0secs

0

This Workflow

Type
Tasks 1
Jobs
Sub Workflows 0

Succeeded Failed Incomplete
0 0
0 0
0 0

1

0

Total

Retries

0
0
0

Total + Retries

0

Entire Workflow

Type Succeeded Failed Incomplete Total Retries Total + Retries
Tasks 1 0 0 1 0 1
Jobs 4 0 0 4 0 4
Sub Workflows 0 0 0 0 0 0
» Job Breakdown Statistics Wo rkfl ow stati sti cs
» Job Statistics
o 2 2
8 -
&

Jobs and Runtime over Time

1260-1102
101 2260-4102
20 22-60-4102
PO 22604102

ezt

€1122:60-4102

b1122:60-4102

G4 2260-4102

911 2260-1102

£112260-4102

81122604102

61122601102

02 22604102

121 2260-4102
00 £2604102
101 £260-4102
€0 £2°60°1 102
Y0 £260-4102

S0 £260-4102
90 £260-4102

INPUT SITE 1 INPUT SITE n
SRM SRM
GridFTP

GridFTP
irods irods
s3

SUBMIT HOST
Data Flow for Pegasus Workflows on OSG with .

Abstract
é E LA GlideinWMS and Staging Storage Element
Executes On
1 Submit Host . ‘
HTTP ,/l

‘ OSG COMPUTE ELEMENT - 1

Pegasus Planner
@

Pegasus Lite'
Instance

," STAGING STORAGE
'.’ ELEMENT

Supports independent
rotocols for the get and put

Head Node
"
Workflow WN .
Setup ~
Job VN . GET interfaces
\ 4 A INTERFACE
N 7
7
Workflow N g orT
Stagein AN T
Job <N f1
_ 7 N ! ! 5I
0SG COMPUTE ELEMENT- n 72 N A yy'!
Executable PUT Protocols Supported:
Workflow Pegasus Lite - ‘V INTERFACE
WN Instance SRM
! GridFTP
! HTTP
! IRODS
‘l s3
\ SCP
\

\
\
\

Head Node
"
"
N

L w @
Executes On A
Submit Host

Workflow
Stageout
Job Condor
Queue
Data
Cleanup
Job LEGEND OUTPUT SITE
o,
. Directory Setup Job . Data Stageout Job lvggs

. Directory Cleanup Job

O Data Stagein Job

Condor DAGMan

USCViterbi

School of Engineering

Workflow Reduction (Data Reuse)

File f.d exists somewhere.
Abstract Workflow Reuse it.

Mark Jobs D and B to delete Delete Job D and Job B

USC Vlterb1 |

»ol of Eng

Data cleanup

* Problem: Running out of disk space during workflow execution

= Why does it occur
— Workflows could bring in huge amounts of data
— Data is generated during workflow execution
— Users don’ t worry about cleaning up after they are done

= Solution
— Do cleanup after workflows finish

» Does not work as the scratch may get filled much before during
execution

— Interleave cleanup automatically during workflow execution.

» Requires an analysis of the workflow to determine, when a file is no
longer required

— Cluster the cleanup jobs by level for large workflows

USC V1terb1 |

School of Eng

Data cleanup (cont)

with cleanup § with cleanup ... _. without cleanup

o —

space used in HMB

b 22 44 66 \Bt‘

time in minutes

Montage 1 degree workflow run with cleanup

USC Viterbi

School of Engineering

Hierarchical Workflows

[DAX A

Compute Job

Pegasus Plan
And Execute
Job

RECURSIVE DAX

—
-_
——

DAX B

=

DAX C

DAX D

Example Hierarchical Workflow

= <dax> element behaves like <job>
— Arguments are for pegasus-plan (most are inherited)

* Planner is invoked when DAX job is ready to run

<?xml version="1.0" encoding="UTF-8"?>
<adag version="3.4" name="multi-level">
<job id="ID000000Ol1l" namespace="example" name="sleep">
<argument>5</argument>
</job>
<dax id="ID0000002" file="sub.dax">
<argument>--output-site local</argument>
</dax>
<job id="ID0000003" namespace="example" name="sleep">
<argument>5</argument>
</job>
<child ref="1ID0000002">
<parent ref="ID0O000001"/>
</child>
<child ref="1ID0000003">
<parent ref="ID0000002"/>
</child>
</adag>

USCViterbi

School of Engineering

Workflow Restructuring to improve application performance

= Cluster small running jobs together to achieve better
performance

= Why?
— Each job has scheduling overhead — need to make this overhead
worthwhile
— ldeally users should run a job on the grid that takes at least 10/30/60/7?
minutes to execute
— Clustered tasks can reuse common input data — less data transfers

e o
0000 0000
©o o0

6066

e

Horizontal clustering Label-based clustering

USCV1terb1 ,

School of Eng

Pegasus-MPI-Cluster

= A master/worker task scheduler for running fine-grained
workflows on batch systems

= Runs as an MPI job
— Uses MPI to implement master/worker protocol

= Works on most HPC systems
— Requires: MPI, a shared file system, and fork()

= Allows sub-graphs of a Pegasus workflow to be
submitted as monolithic jobs to remote resources

}
L [l

Worker
(rank 1-N)

USC V1terb1 |

School of Eng

PMC Features

= Fault Tolerance
— Retries at the task level (master resends task to another worker)

— Retries at the workflow level (using a transaction log to record
progress)

= Resource-aware scheduling
— Many HPC machines have low memory/core
— PMC can allocate memory and cores to a task, and force other slots on
the same node to be idle

= 1/O Forwarding
— Small tasks == small I/O == poor performance
— PMC reads data off of pipes from worker and forwards it using MPI
messages to a central I/O process, which collects the data and writes it
to disk
— Writes are not interleaved, no locking required for synchronization

USC V1terb1 |

School of Eng

What Does Pegasus provide an Application - |

= Portability / Reuse

— User created workflows can easily be mapped to and run in
different environments without alteration.

= Data Management

— Pegasus handles replica selection, data transfers and output
registrations in data catalogs. These tasks are added to a
workflow as auxiliary jobs by the Pegasus planner.

= Performance

— The Pegasus mapper can reorder, group, and prioritize tasks in
order to increase the overall workflow performance.

USC V1terb1 |

School of Eng

What Does Pegasus provide an Application - |l

= Provenance

— Provenance data is collected in a database, and the data can be
summaries with tools such as pegasus-statistics, pegasus-plots,
or directly with SQL queries.

= Reliability and Debugging Tools

— Jobs and data transfers are automatically retried in case of
failures. Debugging tools such as pegasus-analyzer helps the
user to debug the workflow in case of non-recoverable failures.

= Scalability
— Hierarchal workflows
— Scale to hundreds of thousands of nodes in a workflow.

USC V1terb1 |

School of Eng

If you get stuck...

And you can draw....

We can help you!

USC V1terb1 40 1D P

School of Engineering ///5_._\/

More Information

= Pegasus Website:

= Tutorial:

= Documentation:

= Email addresses:
— Pegasus users list (public):
— Pegasus support (private):

USC V1terb1 |

School of Eng

