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Outline 

§  Introduction to Scientific Workflows and Pegasus 
 
§  Running Workflows through Pegasus 

–  Composition 
–  Submission 
–  Monitoring 
–  Debugging 

§  Advanced Features 
–  Data Cleanup 
–  Data Reuse 
–  Hierarchal Workflows 
–  Job Clustering 
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Scientific Workflows 

§  Orchestrate complex, multi-stage scientific computations 

§  Often expressed as directed acyclic graphs (DAGs) 

§  Capture analysis pipelines for sharing and reuse 

§  Can execute in parallel on distributed resources 
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Workflows can be simple! 
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Some workflows 
are structurally 
complex and can 
use large 
amounts of data. 
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Some workflows are large-scale 
and data-intensive  

§  Montage Galactic Plane Workflow 
–  18 million input images (~2.5 TB) 
–  900 output images (2.5 GB each, 2.4 TB total) 
–  10.5 million tasks (34,000 CPU hours) 

§   Need to support hierarchical workflows and scale 

John Good (Caltech) 
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CyberShake PSHA Workflow 

2014: 286 Sites, 4 models 

§  Each site = one workflow 

§  Each workflow has 420,000 tasks in 21 
jobs 

 
²  Builders ask seismologists: “What will the peak ground 

motion be at my new building in the next 50 years?” 
²  Seismologists answer this question using Probabilistic 

Seismic Hazard Analysis (PSHA) 

Some workflows couple large-scale simulations 
with data analysis 
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Why Scientific Workflows? 

§  Automate complex processing pipelines 

§  Support parallel, distributed computations 

§  Use existing codes, no rewrites 

§  Relatively simple to construct 

§  Reusable, aid reproducibility 

§  Can be shared with others 

§  Capture provenance of data 
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Scientific Workflow Challenges 

§  Portability
–  How can you run a pipeline on Amazon EC2 one day, and a PBS cluster the 

next?
§  Data Management

–  How do you ship in the small/large amounts data required by your pipeline?
–  Different protocols for different sites: Can I use SRM? How about GridFTP? 

HTTP and Squid proxies?
–  Can I use Cloud based storage like S3 on EC2?

§  Debug and Monitor Computations.
–  Users need automated tools to go through the log files
–  Need to correlate data across lots of log files
–  Need to know what host a job ran on and how it was invoked

§   Restructure Pipelines for Improved Performance
–  Short running tasks?
–  Data placement?  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Pegasus  
Workflow Management System (est. 2001) 

§  A collaboration between USC and the Condor Team at UW 
Madison (includes DAGMan) 

§  Maps a resource-independent “abstract” workflow onto 
resources and executes the “executable” workflow 

§  Used by a number of applications in a variety of domains 

§  Provides reliability—can retry computations from the point of 
failure 

§  Provides scalability—can handle large data and many 
computations (kbytes-TB of data, 1-106 tasks) 

§  Infers data transfers, restructures workflows for performance 

§  Automatically captures provenance information 

§  Can run on resources distributed among institutions, laptop, 
campus cluster, Grid, Cloud 
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Pegasus WMS Environment 
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Pegasus Workflow Management System 

§  Abstract Workflows - Pegasus input workflow 
description 
–  Workflow “high-level language” 
–  Only identifies the computation, devoid of resource descriptions, 

devoid of data locations 
–  File Aware 

§  Pegasus is a  workflow “compiler” (plan/map) 
–  Target is DAGMan DAGs and Condor submit files 
–  Transforms the workflow for performance and reliability 
–  Automatically locates physical locations for both workflow 

components and data 
–  Collects runtime provenance 
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DAX – XML format to describe Abstract Workflows 
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Abstract to Executable Workflow Mapping - Discovery 

§  Data 
–  Where do the input datasets 

reside? 

§  Executables 
–  Where are the executables 

installed ? 
–  Do binaries exist somewhere 

that can be staged to remote 
grid sites? 

§  Site Layout 
–  What does a execution site 

look like? 

Pegasus  
Workflow  
Compiler 

Transformation  
Catalog 

Site Catalog 

Replica Catalog 

Abstract Workflow 

Executable Workflow 
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How does Pegasus view a compute resource as? 
§  For Pegasus a compute resource or a site is associated with the 

following 
–  An entry point or a scheduler contact to submit jobs to e.g PBS/LSF/Condor 
–  File servers to stage data to the cluster 
–  Different types of directories on the site 

•  Shared-scratch  - shared across all the worker nodes in the site 
•  Local – a directory/filesystem local to the node where a job executes 

–  Site wide information like environment variables to be set when a job is 
run. 
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Site Catalog 

§  Stores details about each target execution/storage site 
–  Job submission endpoints (GRAM URL, etc.) 
–  Paths to storage/scratch directories 
–  Data transfer services (GridFTP servers, etc.) 
–  Paths to credentials (X509 proxy, ssh key, etc.) 
–  Site-level configuration (environment variables, etc.) 
–  “local” site is special—refers to submit host 

<!-- Example site catalog --> 
<sitecatalog> 
  <site handle="example" arch="x86_64" os="LINUX"> 
    <grid type="gt5" contact="example.isi.edu/jobmanager-fork” jobtype="auxillary"/> 
    <grid type="gt5" contact="example.isi.edu/jobmanager-pbs” jobtype="compute"/> 
    <directory type="shared-scratch" path="/scratch"> 
      <file-server operation="all" url="gsiftp://example.isi.edu/scratch"/> 
    </directory> 
    <profile namespace="env" key="GLOBUS_LOCATION">/usr/local/globus</profile> 
    <profile namespace=“pegasus” key=“style”>globus</profile> 
    <profile namespace=“pegasus” key=“X509_USER_PROXY”>/tmp/x509_u40001</profile> 
  </site> 
</sitecatalog> 
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Transformation Catalog 

§  Maps transformations to executables on each site 
–  Physical path or URL of executable and dependent data/

configuration files 
–  Executable characteristics (OS, architecture, glibc, etc.) 
–  Job-level configuration (e.g. environment variables, profiles) 

# Example transformation catalog 
tr example::date { 
 
  profile env ”TZ" ”America/Los_Angeles” 
 
  site example { 
    pfn "/bin/date" 
    os "linux" 
    arch "x86_64" 
    type "INSTALLED" 
  } 
} 
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Replica Catalog 

§  Maps logical files to physical files 
–  LFN (name) to PFN (path or URL) 
–  Mappings annotated with metadata (e.g. site/pool, size, etc.) 

§  Enables Pegasus to choose “best” replica (replica 
selection phase of planner) 

§  Where Pegasus registers workflow output locations 
§  Support file-based or DB-based RC (also callout) 

# Example replica catalog 
f.1     gsiftp://example.isi.edu/inputs/f.1 pool=”example” 
f.1     file:///inputs/f.1                  site=”example” 
f.2     file:///inputs/f.2                  site=“example” 
f.2     file:///inputs/f.2                  site=“local” 
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Abstract to Executable Workflow Mapping 

§  Abstraction provides  
–  Ease of Use (do not need to 

worry about low-level 
execution details) 

–  Portability (can use the same 
workflow description to run on 
a number of resources and/or 
across them) 

–  Gives opportunities for 
optimization and fault 
tolerance 

•  automatically restructure 
the workflow 

•  automatically provide 
fault recovery (retry, 
choose different 
resource) 



General Workflow Execution Model 

•  Input	
  Data	
  Site,	
  Compute	
  Site	
  and	
  Output	
  Data	
  Sites	
  can	
  be	
  co-­‐located	
  
–  Example:	
  Input	
  data	
  is	
  already	
  present	
  on	
  the	
  compute	
  site.	
  

•  Most	
  of	
  the	
  tasks	
  in	
  
scien1fic	
  workflow	
  
applica1ons	
  require	
  
POSIX	
  file	
  seman1cs	
  

–  Each	
  task	
  in	
  the	
  
workflow	
  opens	
  one	
  or	
  
more	
  input	
  files	
  

–  Read	
  or	
  write	
  a	
  por1on	
  
of	
  it	
  and	
  then	
  close	
  the	
  
file.	
  

•  Data	
  Staging	
  Site	
  can	
  
be	
  the	
  shared	
  
filesystem	
  on	
  the	
  
compute	
  cluster!	
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Supported Data Staging Approaches - I 

§  Worker nodes and the head node have 
a shared filesystem, usually a parallel 
filesystem with great I/O characteristics

§  Can leverage symlinking against 
existing datasets

§  Staging site is the shared-fs.

Submit 
Host 

Compute Site 

Shared 
FS 

WN 

WN 
hpc-pegasus 

Shared Filesystem setup (typical of XSEDE and HPC sites)

Non-shared filesystem setup with staging site (typical of OSG and EC 2)

§  Worker nodes don’t share a filesystem.
§  Data is pulled from / pushed to the 

existing storage element.
§  A separate staging site such as S3. Compute Site 

Submit 
Host 

Staging 
Site 

WN 

WN 
Amazon  

EC2 with S3 
Jobs 
Data 

USC HPCC 
Cluster 
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Supported Data Staging Approaches - II 

§  Worker nodes don’t share a filesystem
§  Symlink against datasets available locally
§  Data is pulled from / pushed to the 

submit host via Condor file transfers
§  Staging site is the submit host.

Using Pegasus allows you to move from one 
deployment to another without changing the 
workflow description! 

Condor IO ( Typical of large Condor Pools like CHTC)

Supported Transfer Protocols

§  HTTP
§  SCP
§  GridFTP
§  IRODS
§  S3
§  Condor File IO
§  File Copy

Submit 
Host 

Local FS 

Compute Site 

WN WN 
Jobs 
Data 
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Simple Steps to Run Pegasus 

1.  Specify your computation in terms of DAX 
–  Write a simple DAX generator 
–  Python, Java , Perl based API provided with Pegasus 

2.  Set up your catalogs 
–  Replica catalog, transformation catalog and site catalog. 

3.  Plan and Submit your workflow  
–  Use pegasus-plan to generate your executable workflow that is 

mapped onto the target resources and submits it for execution 

4.  Monitor and Analyze your workflow 
–  Use pegasus-status | pegasus-analyzer to monitor the execution of 

your workflow 

5.  Workflow Statistics 
–  Run pegasus-statistics to generate statistics about your workflow run. 

23 
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Different Directories used by Pegasus 

1.  Submit Directory 
–  The directory where pegasus-plan generates the executable workflow i.e 

HTCondor DAGMan and job submit files. 
–  Specified by --dir option to pegasus-plan 

2.  Input Directory 
–  Mostly input file locations are catalogued in the Replica Catalog. 
–  However, if inputs are on the submit host, then you can pass –input-dir 

option to pegasus-plan 

3.  Scratch Directory 
–  Workflow specific directory created on the staging site by the create-dir 

job. This is where all the workflow inputs and outputs are gathered. 
–  The base directory specified in the site catalog entry in sites.xml file. 

4.  Output Directory  
–  The output directory where the outputs of the workflow appear. 
–  Specified in the output site entry in the sites.xml file. 
–  Can also be optionally specified by –output-dir option to pegasus-plan 

24 
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Workflow Monitoring - Stampede 

§  Leverage Stampede Monitoring framework with DB backend
–  Populates data at runtime. A background daemon monitors the logs files and 

populates information about the workflow to a database
–  Stores workflow structure, and runtime stats for each task.

§  Tools for querying the monitoring framework
–  pegasus-status

•  Status of the workflow
–  pegasus-statistics

•  Detailed statistics about your finished workflow

------------------------------------------------------------------------------ 
Type           Succeeded Failed  Incomplete  Total     Retries   Total+Retries 
Tasks          135002    0       0           135002    0         135002        
Jobs           4529      0       0           4529      0         4529          
Sub-Workflows  2         0       0           2         0         2             
------------------------------------------------------------------------------ 
 
Workflow wall time                               : 13 hrs, 2 mins, (46973 secs) 
Workflow cumulative job wall time                : 384 days, 5 hrs, (33195705 secs) 
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs) 
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Workflow Debugging Through Pegasus 

§  After a workflow has completed, we can run pegasus-
analyzer to analyze the workflow and provide a summary 
of the run 
 

§  pegasus-analyzer's output contains 
–   a brief summary section 

•   showing how many jobs have succeeded  
•   and how many have failed.  

–  For each failed job 
•  showing its last known state 
•  exitcode 
•  working directory 
•  the location of its submit, output, and error files. 
•  any stdout and stderr from the job. 

Alleviates the need for searching through large DAGMan and Condor 
logs! 
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Workflow Monitoring Dashboard: pegasus-dashboard 

§  A python based online workflow dashboard 
–  Uses the FLASK framework 
–  Beta version released in 4.2 
–  Queries the STAMPEDE database 

§  Lists all the user workflows on the home page and are color 
coded.  

–  Green indicates a successful workflow, 
–  Red indicates a failed workflow  
–  Blue indicates a running workflow 

§  Explore Workflow and Troubleshoot ( Workflow Page ) 
–  Has identifying metadata about the workflow 
–  Tabbed interface to  

•  List of sub workflows 
•  Failed jobs 
•  Running  jobs 
•  Successful jobs. 
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Workflow Monitoring Dashboard 

Host Chart 

Jobs and Runtime over Time 

Gantt Chart 

Workflow statistics 
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Workflow Reduction (Data Reuse) 
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Useful when you have done a part of computation and then realize the 
need to change the structure. Re-plan instead of submitting rescue DAG! 
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Data cleanup 

§  Problem: Running out of disk space during workflow execution 
 

§  Why does it occur 
–  Workflows could bring in huge amounts of data 
–  Data is generated during workflow execution 
–  Users don’t worry about cleaning up after they are done 

 
§  Solution 

–  Do cleanup after workflows finish 
•  Does not work as the scratch may get filled much before during 

execution 
 

–  Interleave cleanup automatically during workflow execution. 
•  Requires an analysis of the workflow to determine, when a file is no 

longer required 

–  Cluster the cleanup jobs by level for large workflows 
Real Life Example: Used by a UCLA genomics researcher to delete TB’s 
of data automatically for long running workflows!! 
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Data cleanup (cont) 

Montage 1 degree workflow run with cleanup 
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Hierarchical Workflows 
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Example Hierarchical Workflow 
§  <dax> element behaves like <job> 

–  Arguments are for pegasus-plan (most are inherited) 

§  Planner is invoked when DAX job is ready to run 
<?xml version="1.0" encoding="UTF-8"?>
<adag version="3.4" name="multi-level">

<job id="ID0000001" namespace="example" name="sleep">
<argument>5</argument>

</job>
<dax id="ID0000002" file="sub.dax">

<argument>--output-site local</argument>
</dax>
<job id="ID0000003" namespace="example" name="sleep">

<argument>5</argument>
</job>
<child ref="ID0000002">

<parent ref="ID0000001"/>
</child>
<child ref="ID0000003">

<parent ref="ID0000002"/>
</child>

</adag>
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Workflow Restructuring to improve application performance 

§  Cluster small running jobs together to achieve better 
performance 

§  Why? 
–  Each job has scheduling overhead – need to make this overhead 

worthwhile 
–  Ideally users should run a job on the grid that takes at least 10/30/60/? 

minutes to execute 
–  Clustered tasks can reuse common input data – less data transfers 

Horizontal clustering 
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C C C C

B B
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C C C C

cluster_2cluster_1
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A
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Label-based clustering 
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Pegasus-MPI-Cluster 

§  A master/worker task scheduler for running fine-grained 
workflows on batch systems 

§  Runs as an MPI job 
–  Uses MPI to implement master/worker protocol 

§  Works on most HPC systems 
–  Requires: MPI, a shared file system, and fork() 

§  Allows sub-graphs of a Pegasus workflow to be 
submitted as monolithic jobs to remote resources 

Master	
  
(rank	
  0)	
  

Worker	
  
(rank	
  1-­‐N)	
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PMC Features 

§  Fault Tolerance 
–  Retries at the task level (master resends task to another worker) 
–  Retries at the workflow level (using a transaction log to record 

progress) 

§  Resource-aware scheduling 
–  Many HPC machines have low memory/core 
–  PMC can allocate memory and cores to a task, and force other slots on 

the same node to be idle 

§  I/O Forwarding 
–  Small tasks == small I/O == poor performance 
–  PMC reads data off of pipes from worker and forwards it using MPI 

messages to a central I/O process, which collects the data and writes it 
to disk 

–  Writes are not interleaved, no locking required for synchronization 
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What Does Pegasus provide an Application - I 

§  Portability / Reuse 
–  User created workflows can easily be mapped to and run in 

different environments without alteration.  
 

§  Data Management 
–  Pegasus handles replica selection, data transfers and output 

registrations in data catalogs. These tasks are added to a 
workflow as auxiliary jobs by the Pegasus planner. 

 

§  Performance 
–  The Pegasus mapper can reorder, group, and prioritize tasks in 

order to increase the overall workflow performance. 
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What Does Pegasus provide an Application - II 

§  Provenance 
–  Provenance data is collected in a database, and the data can be 

summaries with tools such as pegasus-statistics, pegasus-plots, 
or directly with SQL queries. 
 

§  Reliability and Debugging Tools 
–  Jobs and data transfers are automatically retried in case of 

failures. Debugging tools such as pegasus-analyzer helps the 
user to debug the workflow in case of non-recoverable failures. 
 

§  Scalability 
–  Hierarchal workflows 
–  Scale to hundreds of thousands of nodes in a workflow. 
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If you get stuck… 
And you can draw…. 

 

 

     We can help you! 
 

40 
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More Information 

§  Pegasus Website: 
–  http://pegasus.isi.edu 

§  Tutorial: 
–  http://pegasus.isi.edu/wms/docs/latest/tutorial.php 

§  Documentation: 
–  http://pegasus.isi.edu/documentation 

§  Email addresses: 
–  Pegasus users list (public): pegasus-users@isi.edu  
–  Pegasus support (private): pegasus-support@isi.edu  

 


