
Introduction to Scientific Workflows
and Pegasus

Karan	
 Vahi	

	

Science	
 Automa1on	
 Technologies	
 Group	

USC	
 Informa1on	
 Sciences	
 Ins1tute	

2

Outline

§  Introduction to Scientific Workflows and Pegasus

§  Running Workflows through Pegasus

–  Composition
–  Submission
–  Monitoring
–  Debugging

§  Advanced Features
–  Data Cleanup
–  Data Reuse
–  Hierarchal Workflows
–  Job Clustering

3

chr21

fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq

fastqSplit fastqSplit fastqSplit fastqSplit fastqSplit fastqSplit

filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams

mapMerge

mapMerge mapMerge mapMerge mapMerge mapMerge mapMerge

map map map map map map map map map map map map

pileup

sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger

create_dir

Scientific Workflows

§  Orchestrate complex, multi-stage scientific computations

§  Often expressed as directed acyclic graphs (DAGs)

§  Capture analysis pipelines for sharing and reuse

§  Can execute in parallel on distributed resources

3

Setup

Split
Filter &

Convert

Map
Merge

Analyze Epigenomics Workflow

4

Workflows can be simple!

J3J1 J2 J4 J5 J9J8J6 J7 Jn

5

Some workflows
are structurally
complex and can
use large
amounts of data.

6

Some workflows are large-scale
and data-intensive

§  Montage Galactic Plane Workflow
–  18 million input images (~2.5 TB)
–  900 output images (2.5 GB each, 2.4 TB total)
–  10.5 million tasks (34,000 CPU hours)

§  Need to support hierarchical workflows and scale

John Good (Caltech)

7

CyberShake PSHA Workflow

2014: 286 Sites, 4 models

§  Each site = one workflow

§  Each workflow has 420,000 tasks in 21
jobs

²  Builders ask seismologists: “What will the peak ground

motion be at my new building in the next 50 years?”
²  Seismologists answer this question using Probabilistic

Seismic Hazard Analysis (PSHA)

Some workflows couple large-scale simulations
with data analysis

Check-
SGTGen-X

Check-
SGTGen-Y

• • •

Update
Run Manager

MPI
Extract

seismogram_
psa

• • •

Seismogram Workflow 8

seismogram_
psa

seismogram_
psa

PMC Clustered Job

1 - 53000

Runs on XSEDE Site

Runs On
XSEDE Sites

Runs Locally

Runs Locally

One Post Processing Workflow
Per Site Per SGT Pair

Check_DB_Site

Notify

Load_Amp

DB_Report Curve_Calc

Diasaggregate

DB Population Workflow

MPI
Extract

seismogram_
psa

• • •

Seismogram Workflow 1

seismogram_
psa

seismogram_
psa

PMC Clustered Job

1 - 53000

Update
Run Manager

Runs Locally

8

Why Scientific Workflows?

§  Automate complex processing pipelines

§  Support parallel, distributed computations

§  Use existing codes, no rewrites

§  Relatively simple to construct

§  Reusable, aid reproducibility

§  Can be shared with others

§  Capture provenance of data

9

Scientific Workflow Challenges

§  Portability
–  How can you run a pipeline on Amazon EC2 one day, and a PBS cluster the

next?
§  Data Management

–  How do you ship in the small/large amounts data required by your pipeline?
–  Different protocols for different sites: Can I use SRM? How about GridFTP?

HTTP and Squid proxies?
–  Can I use Cloud based storage like S3 on EC2?

§  Debug and Monitor Computations.
–  Users need automated tools to go through the log files
–  Need to correlate data across lots of log files
–  Need to know what host a job ran on and how it was invoked

§  Restructure Pipelines for Improved Performance
–  Short running tasks?
–  Data placement?  

10

Pegasus
Workflow Management System (est. 2001)

§  A collaboration between USC and the Condor Team at UW
Madison (includes DAGMan)

§  Maps a resource-independent “abstract” workflow onto
resources and executes the “executable” workflow

§  Used by a number of applications in a variety of domains

§  Provides reliability—can retry computations from the point of
failure

§  Provides scalability—can handle large data and many
computations (kbytes-TB of data, 1-106 tasks)

§  Infers data transfers, restructures workflows for performance

§  Automatically captures provenance information

§  Can run on resources distributed among institutions, laptop,
campus cluster, Grid, Cloud

11

Pegasus WMS Environment

API Interfaces

Portals

Other Workflow
Composition

Tools: Grayson,
Triana, Wings

Pegasus WMS

Mapper

Engine

Scheduler

Users

Distributed Resources
Campus Clusters, Local Clusters, Open Science Grid, XSEDE

GRAM
P
B
S

LSF SGE

C
O
N
D
O
R

STORAGECOMPUTEMIDDLEWARE

Cloudware
OpenStack

 Eucalyptus, Nimbus

GridFTP

HTTP

FTP

SRM

IRODS

Storage

SCP

Compute
 Amazon EC2, RackSpace,

FutureGrid

Workflow
DB

Monitoring

Logs

Notifications

S3

Clouds

12

Pegasus Workflow Management System

§  Abstract Workflows - Pegasus input workflow
description
–  Workflow “high-level language”
–  Only identifies the computation, devoid of resource descriptions,

devoid of data locations
–  File Aware

§  Pegasus is a workflow “compiler” (plan/map)
–  Target is DAGMan DAGs and Condor submit files
–  Transforms the workflow for performance and reliability
–  Automatically locates physical locations for both workflow

components and data
–  Collects runtime provenance

B B

D

A

B B

C C C C

13

DAX – XML format to describe Abstract Workflows

14

Abstract to Executable Workflow Mapping - Discovery

§  Data
–  Where do the input datasets

reside?

§  Executables
–  Where are the executables

installed ?
–  Do binaries exist somewhere

that can be staged to remote
grid sites?

§  Site Layout
–  What does a execution site

look like?

Pegasus
Workflow
Compiler

Transformation
Catalog

Site Catalog

Replica Catalog

Abstract Workflow

Executable Workflow

15

How does Pegasus view a compute resource as?
§  For Pegasus a compute resource or a site is associated with the

following
–  An entry point or a scheduler contact to submit jobs to e.g PBS/LSF/Condor
–  File servers to stage data to the cluster
–  Different types of directories on the site

•  Shared-scratch - shared across all the worker nodes in the site
•  Local – a directory/filesystem local to the node where a job executes

–  Site wide information like environment variables to be set when a job is
run.

16

Site Catalog

§  Stores details about each target execution/storage site
–  Job submission endpoints (GRAM URL, etc.)
–  Paths to storage/scratch directories
–  Data transfer services (GridFTP servers, etc.)
–  Paths to credentials (X509 proxy, ssh key, etc.)
–  Site-level configuration (environment variables, etc.)
–  “local” site is special—refers to submit host

<!-- Example site catalog -->
<sitecatalog>
 <site handle="example" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="example.isi.edu/jobmanager-fork” jobtype="auxillary"/>
 <grid type="gt5" contact="example.isi.edu/jobmanager-pbs” jobtype="compute"/>
 <directory type="shared-scratch" path="/scratch">
 <file-server operation="all" url="gsiftp://example.isi.edu/scratch"/>
 </directory>
 <profile namespace="env" key="GLOBUS_LOCATION">/usr/local/globus</profile>
 <profile namespace=“pegasus” key=“style”>globus</profile>
 <profile namespace=“pegasus” key=“X509_USER_PROXY”>/tmp/x509_u40001</profile>
 </site>
</sitecatalog>

17

Transformation Catalog

§  Maps transformations to executables on each site
–  Physical path or URL of executable and dependent data/

configuration files
–  Executable characteristics (OS, architecture, glibc, etc.)
–  Job-level configuration (e.g. environment variables, profiles)

Example transformation catalog
tr example::date {

 profile env ”TZ" ”America/Los_Angeles”

 site example {
 pfn "/bin/date"
 os "linux"
 arch "x86_64"
 type "INSTALLED"
 }
}

18

Replica Catalog

§  Maps logical files to physical files
–  LFN (name) to PFN (path or URL)
–  Mappings annotated with metadata (e.g. site/pool, size, etc.)

§  Enables Pegasus to choose “best” replica (replica
selection phase of planner)

§  Where Pegasus registers workflow output locations
§  Support file-based or DB-based RC (also callout)

Example replica catalog
f.1 gsiftp://example.isi.edu/inputs/f.1 pool=”example”
f.1 file:///inputs/f.1 site=”example”
f.2 file:///inputs/f.2 site=“example”
f.2 file:///inputs/f.2 site=“local”

19

Abstract to Executable Workflow Mapping

§  Abstraction provides
–  Ease of Use (do not need to

worry about low-level
execution details)

–  Portability (can use the same
workflow description to run on
a number of resources and/or
across them)

–  Gives opportunities for
optimization and fault
tolerance

•  automatically restructure
the workflow

•  automatically provide
fault recovery (retry,
choose different
resource)

General Workflow Execution Model

•  Input	
 Data	
 Site,	
 Compute	
 Site	
 and	
 Output	
 Data	
 Sites	
 can	
 be	
 co-­‐located	

–  Example:	
 Input	
 data	
 is	
 already	
 present	
 on	
 the	
 compute	
 site.	

•  Most	
 of	
 the	
 tasks	
 in	

scien1fic	
 workflow	

applica1ons	
 require	

POSIX	
 file	
 seman1cs	

–  Each	
 task	
 in	
 the	

workflow	
 opens	
 one	
 or	

more	
 input	
 files	

–  Read	
 or	
 write	
 a	
 por1on	

of	
 it	
 and	
 then	
 close	
 the	

file.	

•  Data	
 Staging	
 Site	
 can	

be	
 the	
 shared	

filesystem	
 on	
 the	

compute	
 cluster!	

21

Supported Data Staging Approaches - I

§  Worker nodes and the head node have
a shared filesystem, usually a parallel
filesystem with great I/O characteristics

§  Can leverage symlinking against
existing datasets

§  Staging site is the shared-fs.

Submit
Host

Compute Site

Shared
FS

WN

WN
hpc-pegasus

Shared Filesystem setup (typical of XSEDE and HPC sites)

Non-shared filesystem setup with staging site (typical of OSG and EC 2)

§  Worker nodes don’t share a filesystem.
§  Data is pulled from / pushed to the

existing storage element.
§  A separate staging site such as S3. Compute Site

Submit
Host

Staging
Site

WN

WN
Amazon

EC2 with S3
Jobs
Data

USC HPCC
Cluster

22

Supported Data Staging Approaches - II

§  Worker nodes don’t share a filesystem
§  Symlink against datasets available locally
§  Data is pulled from / pushed to the

submit host via Condor file transfers
§  Staging site is the submit host.

Using Pegasus allows you to move from one
deployment to another without changing the
workflow description!

Condor IO (Typical of large Condor Pools like CHTC)

Supported Transfer Protocols

§  HTTP
§  SCP
§  GridFTP
§  IRODS
§  S3
§  Condor File IO
§  File Copy

Submit
Host

Local FS

Compute Site

WN WN
Jobs
Data

23

Simple Steps to Run Pegasus

1.  Specify your computation in terms of DAX
–  Write a simple DAX generator
–  Python, Java , Perl based API provided with Pegasus

2.  Set up your catalogs
–  Replica catalog, transformation catalog and site catalog.

3.  Plan and Submit your workflow
–  Use pegasus-plan to generate your executable workflow that is

mapped onto the target resources and submits it for execution

4.  Monitor and Analyze your workflow
–  Use pegasus-status | pegasus-analyzer to monitor the execution of

your workflow

5.  Workflow Statistics
–  Run pegasus-statistics to generate statistics about your workflow run.

23

24

Different Directories used by Pegasus

1.  Submit Directory
–  The directory where pegasus-plan generates the executable workflow i.e

HTCondor DAGMan and job submit files.
–  Specified by --dir option to pegasus-plan

2.  Input Directory
–  Mostly input file locations are catalogued in the Replica Catalog.
–  However, if inputs are on the submit host, then you can pass –input-dir

option to pegasus-plan

3.  Scratch Directory
–  Workflow specific directory created on the staging site by the create-dir

job. This is where all the workflow inputs and outputs are gathered.
–  The base directory specified in the site catalog entry in sites.xml file.

4.  Output Directory
–  The output directory where the outputs of the workflow appear.
–  Specified in the output site entry in the sites.xml file.
–  Can also be optionally specified by –output-dir option to pegasus-plan

24

25

Workflow Monitoring - Stampede

§  Leverage Stampede Monitoring framework with DB backend
–  Populates data at runtime. A background daemon monitors the logs files and

populates information about the workflow to a database
–  Stores workflow structure, and runtime stats for each task.

§  Tools for querying the monitoring framework
–  pegasus-status

•  Status of the workflow
–  pegasus-statistics

•  Detailed statistics about your finished workflow

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002
Jobs 4529 0 0 4529 0 4529
Sub-Workflows 2 0 0 2 0 2
--

Workflow wall time : 13 hrs, 2 mins, (46973 secs)
Workflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

26

Workflow Debugging Through Pegasus

§  After a workflow has completed, we can run pegasus-
analyzer to analyze the workflow and provide a summary
of the run

§  pegasus-analyzer's output contains
–  a brief summary section

•  showing how many jobs have succeeded
•  and how many have failed.

–  For each failed job
•  showing its last known state
•  exitcode
•  working directory
•  the location of its submit, output, and error files.
•  any stdout and stderr from the job.

Alleviates the need for searching through large DAGMan and Condor
logs!

27

Workflow Monitoring Dashboard: pegasus-dashboard

§  A python based online workflow dashboard
–  Uses the FLASK framework
–  Beta version released in 4.2
–  Queries the STAMPEDE database

§  Lists all the user workflows on the home page and are color
coded.

–  Green indicates a successful workflow,
–  Red indicates a failed workflow
–  Blue indicates a running workflow

§  Explore Workflow and Troubleshoot (Workflow Page)
–  Has identifying metadata about the workflow
–  Tabbed interface to

•  List of sub workflows
•  Failed jobs
•  Running jobs
•  Successful jobs.

28

Workflow Monitoring Dashboard

Host Chart

Jobs and Runtime over Time

Gantt Chart

Workflow statistics

WN

Head Node

WN W
W

Pegasus Lite
 Instance

WN

WN

OSG COMPUTE ELEMENT- n

Storage

STAGING STORAGE
ELEMENT

Supports independent
protocols for the get and put

interfaces

WJ
W

WJ

X

Y

WJ

X

Y

Abstract
Workflow

Condor
Queue

Directory Setup Job

Data Stagein Job

Data Stageout Job

Directory Cleanup Job

LEGEND

SI
Job

SO
Job

Executes On
Submit Host

Executes On
Submit Host

Workflow
Stagein

Job

Workflow
 Stageout

Job

WN

Head Node

WN J
J

Pegasus Lite
 Instance

WN

WN

OSG COMPUTE ELEMENT - 1

Storage

INPUT SITE n
SRM

GridFTP
irods

S3

Storage

INPUT SITE 1
SRM

GridFTP
irods

S3

Storage

OUTPUT SITE
SRM

GridFTP
irods

S3

SI
Job

Data Flow for Pegasus Workflows on OSG with
GlideinWMS and Staging Storage Element

Pegasus Planner

SUBMIT HOST

Executable
Workflow

Workflow
Setup
Job

Data
Cleanup

Job

Condor DAGMan

1

2

1'

4

2'

4'

5

HTTP
Squid
Cache

GET
INTERFACE

PUT
INTERFACE Protocols Supported:

SRM
GridFTP

HTTP
IRODS

S3
SCP

3'

3

30

Workflow Reduction (Data Reuse)

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.
Reuse it.
Mark Jobs D and B to delete

Delete Job D and Job B

Useful when you have done a part of computation and then realize the
need to change the structure. Re-plan instead of submitting rescue DAG!

31

Data cleanup

§  Problem: Running out of disk space during workflow execution

§  Why does it occur
–  Workflows could bring in huge amounts of data
–  Data is generated during workflow execution
–  Users don’t worry about cleaning up after they are done

§  Solution

–  Do cleanup after workflows finish
•  Does not work as the scratch may get filled much before during

execution

–  Interleave cleanup automatically during workflow execution.
•  Requires an analysis of the workflow to determine, when a file is no

longer required

–  Cluster the cleanup jobs by level for large workflows
Real Life Example: Used by a UCLA genomics researcher to delete TB’s
of data automatically for long running workflows!!

32

Data cleanup (cont)

Montage 1 degree workflow run with cleanup

33

Hierarchical Workflows

34

Example Hierarchical Workflow
§  <dax> element behaves like <job>

–  Arguments are for pegasus-plan (most are inherited)

§  Planner is invoked when DAX job is ready to run
<?xml version="1.0" encoding="UTF-8"?>
<adag version="3.4" name="multi-level">

<job id="ID0000001" namespace="example" name="sleep">
<argument>5</argument>

</job>
<dax id="ID0000002" file="sub.dax">

<argument>--output-site local</argument>
</dax>
<job id="ID0000003" namespace="example" name="sleep">

<argument>5</argument>
</job>
<child ref="ID0000002">

<parent ref="ID0000001"/>
</child>
<child ref="ID0000003">

<parent ref="ID0000002"/>
</child>

</adag>

35

Workflow Restructuring to improve application performance

§  Cluster small running jobs together to achieve better
performance

§  Why?
–  Each job has scheduling overhead – need to make this overhead

worthwhile
–  Ideally users should run a job on the grid that takes at least 10/30/60/?

minutes to execute
–  Clustered tasks can reuse common input data – less data transfers

Horizontal clustering

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

cluster_2cluster_1

B B

D

A

B B

C C C C

Label-based clustering

36

Pegasus-MPI-Cluster

§  A master/worker task scheduler for running fine-grained
workflows on batch systems

§  Runs as an MPI job
–  Uses MPI to implement master/worker protocol

§  Works on most HPC systems
–  Requires: MPI, a shared file system, and fork()

§  Allows sub-graphs of a Pegasus workflow to be
submitted as monolithic jobs to remote resources

Master	

(rank	
 0)	

Worker	

(rank	
 1-­‐N)	

37

PMC Features

§  Fault Tolerance
–  Retries at the task level (master resends task to another worker)
–  Retries at the workflow level (using a transaction log to record

progress)

§  Resource-aware scheduling
–  Many HPC machines have low memory/core
–  PMC can allocate memory and cores to a task, and force other slots on

the same node to be idle

§  I/O Forwarding
–  Small tasks == small I/O == poor performance
–  PMC reads data off of pipes from worker and forwards it using MPI

messages to a central I/O process, which collects the data and writes it
to disk

–  Writes are not interleaved, no locking required for synchronization

38

What Does Pegasus provide an Application - I

§  Portability / Reuse
–  User created workflows can easily be mapped to and run in

different environments without alteration.

§  Data Management
–  Pegasus handles replica selection, data transfers and output

registrations in data catalogs. These tasks are added to a
workflow as auxiliary jobs by the Pegasus planner.

§  Performance
–  The Pegasus mapper can reorder, group, and prioritize tasks in

order to increase the overall workflow performance.

39

What Does Pegasus provide an Application - II

§  Provenance
–  Provenance data is collected in a database, and the data can be

summaries with tools such as pegasus-statistics, pegasus-plots,
or directly with SQL queries.

§  Reliability and Debugging Tools
–  Jobs and data transfers are automatically retried in case of

failures. Debugging tools such as pegasus-analyzer helps the
user to debug the workflow in case of non-recoverable failures.

§  Scalability
–  Hierarchal workflows
–  Scale to hundreds of thousands of nodes in a workflow.

40

If you get stuck…
And you can draw….

 We can help you!

40

41

More Information

§  Pegasus Website:
–  http://pegasus.isi.edu

§  Tutorial:
–  http://pegasus.isi.edu/wms/docs/latest/tutorial.php

§  Documentation:
–  http://pegasus.isi.edu/documentation

§  Email addresses:
–  Pegasus users list (public): pegasus-users@isi.edu
–  Pegasus support (private): pegasus-support@isi.edu

