

Pegasus 101

Rafael Ferreira da Silva

rafsilva@isi.edu

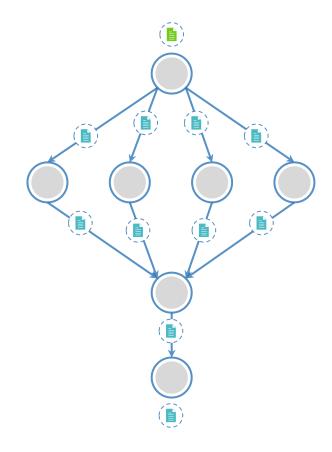
February 25, 2021

Why Pegasus?

Automates Complex, Multi-stage Processing Pipelines

Enables Parallel, Distributed Computations

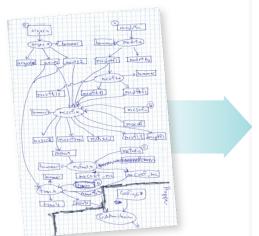
Automatically Executes Data Transfers


Reusable, Aids Reproducibility

Records How Data was Produced (Provenance)

Handles Failures with to Provide Reliability

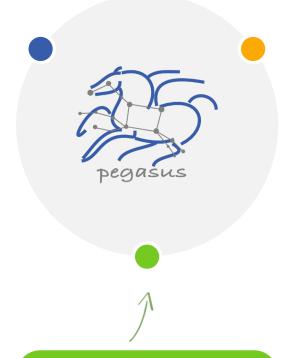
Keeps Track of Data and Files


Ensures **Data Integrity** during workflow execution

How to build workflows with Pegasus?


```
#!/usr/bin/env python3
import os
import logging
from pathlib import Path
from argparse import ArgumentParser
logging.basicConfig(level=logging.DEBUG)
# --- Import Pegasus API -
from Pegasus.api import *
# --- Create Abstract Workflow -----
wf = Workflow("pipeline")
webpage = File("pegasus.html")
# --- Create Parent Job -----
curl_job = (
    Job("curl")
    .add_args("-o", webpage, "http://pegasus.isi.edu")
    .add_outputs(webpage, stage_out=False, register_replica=False)
count = File("count.txt")
# --- Create Dependent Job -
wc_{job} = (
    Job("wc")
    .add_args("-1", webpage)
    .add_inputs(webpage)
    .set_stdout(count, stage_out=True, register_replica=True)
# --- Add jobs to the Abstract Workflow -----
wf.add_jobs(curl_job, wc_job)
# --- Add control flow dependency -----
wf.add_dependency(wc_job, parents=[curl_job])
# --- Write out the Abstract Workflow -----
wf.write()
```


What information does Pegasus need?


from the abstraction to execution

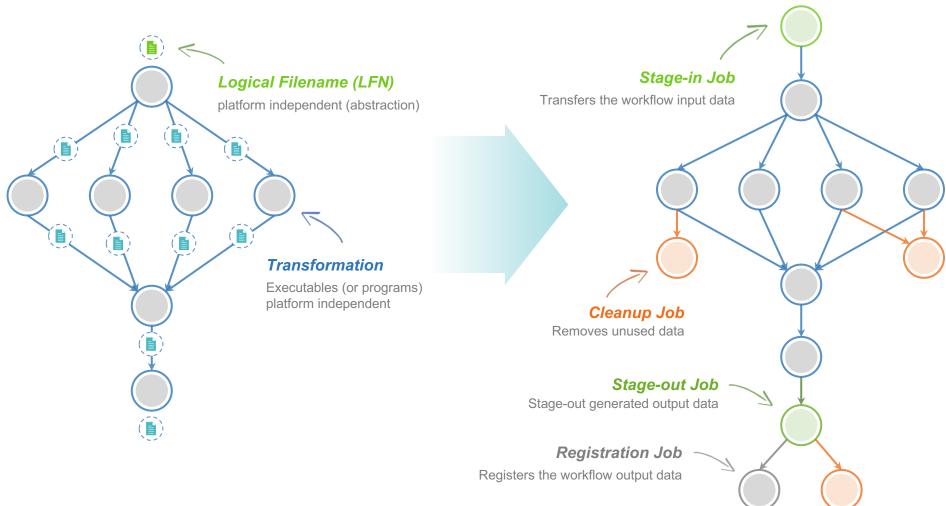
Site Catalog

Describes the **execution sites** where the workflow jobs are to be executed

**automatically created for default local and condorpool sites

Transformation Catalog

Describes the **executables** (called "transformations") used by the workflow


Describes all of the **input data** stored on external servers

Portable Description

Users do not worry about low level execution details

Could you talk more about execution?

COMPUTE

Desktop/Laptop

Local/Campus Cluster

HTCondor, PBS, Slurm, LSF, SGE

HPC Systems

XSEDE, TACC, ORNL, ANL, NERSC, etc.

Clouds

Amazon AWS, Google Cloud, Chameleon Cloud, etc.

Grids

Open Science Grid

STORAGE

Transfer Protocols

HTTP, SCP, GridFTP, Globus Online, iRods, Amazon S3, Google Storage, SRM, FDT, Stashcp, Rucio, cp, In -s

File Systems

Shared and non-shared file systems, and HTCondor I/O

Parallel Transfers

Automated Retries

OPTIMIZATIONS

Task Clustering

Reduces execution overhead

Data Reuse

Avoids re-computations

Fault-tolerance

Checkpoints, Retries, Rescue DAGs

Large-scale Workflows

Hierarchical execution

Grab us during the **break**

Come to office hours @12:30pm PST / 3:30pm EST

Do a **self-guided tutorial**

https://pegasus.isi.edu/documentation/user-guide/tutorial.html

We are happy to learn about your application and are here to help