
Pegasus Users Group
MEETING

GeoEDF: A Framework for Geospatial
Research Workflows
Rajesh Kalyanam
Research Scientist, Purdue Research Computing

02/25/21

GeoEDF Vision

An Extensible Geospatial Data Framework Towards
FAIR Science

To help data-driven sciences to be more
Findable, Accessible, Interoperable, Reusable

funded by NSF CSSI program award #: 1835822, Oct 2018 - Sep 2023

The GeoEDF Project

Multidisciplinary Project Leadership

Jian
Jin

Plant phenotyping &
sensors

Ag & Biologyical
Engineering

Venkatesh
Merwade

Flood modeling
& visualization

Civil Engineering

Jack
Smith

Water Quality
& resource

management
Marshall University

Carol
Song

PI
Cyberinfrastructure
Research Computing

Uris
Baldos

Sustainable
development

Agricultural Economics

Example Workflow from Agricultural Economics

Multidisciplinary
domains often need
to access diverse

datasets and
integrate them with

existing models

Reality!

Working through
the specifics

reveals the more
messy details!

Streamline data
wrangling in

research workflows
Enable researchers to

break down a complex
research task into a

collection of data
acquisition and

processing sub-tasks

Promote FAIR
science principles

Integrate GeoEDF and
cyberinfrastructure to
implicitly & explicitly
promote FAIR science
principles

Provide reusable and
scalable workflow
building blocks
Improve the efficiency of
day-to-day research
workflows by enabling
standardization, reuse,
composition, and
scalable execution

03

01 02

GeoEDF Design Principles

Reusable Data
Connectors

Implement various
data access protocols,
enable data acquisition
from popular
repositories

Reusable Data
Processors

Implement domain
agnostic & domain
specific geospatial
processing operations

Plug-and-play
Workflow Composer

Enable the
composition of
individual connectors
& processors into
complex workflows

GeoEDF

Enable researchers to conceive of geospatial data driven
workflows as a sequence of data acquisition and processing steps

that can be carried out using pre-existing or user contributed
connectors and processors

GeoEDF Components

NASA MODIS, SMAP, other Earthdata DAACs

USGS Elevation, land use, hydrography, Gage, NLDI

USDA Soil, land cover, land use

CUASHI Rainfall, Hydroshare resources

EarthStat Crop data

FAO Arable land, harvest data

CIESIN Population data

EPA Water quality

Others (no API yet) Open Data Cubes, Google Earth Engine, ESS-Dive

Data Connector Examples

Domain
Independent

Reproject, resample, format transformation, filter, mosaic, clip/mask,
aggregate (spatial & temporal), visualization, reclassification

Hydrology Terrain analysis, flood models

Digital Ag Query, spatial/temporal filter, ML training, decision support

Sustainability Downsample, (weighted) aggregate, FEWS models

Data Processor Examples

Plug-and-play Workflow Composer

Workflow Framework defining

 Standardized interfaces for connectors and processors
 Syntax and semantics of defining and composing instances of connectors

and processors into scientific workflows

Workflow Engine transforming

 “Declarative”, abstract workflows into code executing on heterogeneous
compute resources

Workflows are sequences
of connector and

processor instances

Connector and
Processor instances

specified in YAML

Connector and
Processor Python

classes

GeoEDF in a nutshell

Example Hydrologic Workflow

Apply GeoEDF principles

$1:
Input:

NASAInput:
url: http:// files.ntsg.umt.edu/data/ NTSG_Products/MOD16/MOD16A2.105_MERRAGMAO/%{file}
user:rkalyana
password:

Filter:
file:

PathFilter:
pattern: ‘Y%{year}/D001/*.h00v08*.hdf’

year:
DateTimeFilter:

pattern: ‘%Y’
start: 01/01/2000
end:12/31/2005
period: 1Y

$2:
HDFShapefileEOSMask:

hdffile: $1
shapefile:/home/rkalyana/subs1.shp

Data connector

Data processor

Dynamically
bound

variable
Python
class

Workflow
stage

● Filters provide bindings for variables
● They promote modularization and can

implement complex spatial and temporal
filtering

● Filters help restrict the data that is actually
“downloaded”

The GeoEDF Workflow

Workflow Concretization using Pegasus
 Connectors need to bind filter variables in order; arbitrary number

of variable bindings may be generated; each binding “retrieves”
arbitrary number of files

 Processors may need to process an arbitrary number of files
retrieved by a connector

 Each connector or processor turns into its own “sub-workflow”

 Top-level DAX builds and executes these sub-workflows as it goes

 Sub-workflows only transfer back data necessary to construct the
next ”stage” sub-workflow; viz., filter values, file listing

 Final step returns outputs

 *Connectors/processors can have arbitrary software dependencies
(containerization is a good idea!)

 **Public-private keypair generated for each workflow to encrypt
sensitive strings (viz. any field left blank for user input in workflow definition)

(1) Contribute connectors/processors via
GitHub PRs

(2) Detect changes, build Singularity
container, push to registry server

(3) Query registry for list of connector,
processor containers

Connector/Processor Contribution Process

Connector
Python class

Processor
Python class

GitHub
repo

CI/CD
pipeline

Singularity
Container

registry (AWS)

GeoEDF YAML
workflow

GeoEDF workflow
engine

Condor
pool/HPC/local
execution host

Container image

Workflow job

Workflow
manager

GeoEDF
framework

CI environment

Pegasus

Result data

GeoEDF

Leveraged

User
contributions

Cyberinfrastructure Integration

Dec 2020

• Sample connectors, processors
• CI/CD pipeline in place
• Proof-of-concept Jupyter notebook based on Pegasus dev container

Feb 2021

• Execution on HPC
• Integration with MyGeoHub gateway

Mar 2021

• Release v1.0 available on MyGeoHub, PyPI, GitHub
• Sample end-to-end research workflows
• Documentation

Summer
2021

• Workflow monitoring
• Data annotation hooks
• CI interoperability and external CI install

Roadmap

Our Pegasus Feedback

Cyberinfrastructure Integration

 Best practices for setting up Pegasus to support (a) multiple users, (b) secure
sensitive information (e.g., catalogs, keys)

 Middleware layer with a thin API interface?

New Features
 Support for conditionals, loop-until?
 High-level monitoring, i.e., what task in what sub-workflow is currently executing?

Thank You!
Where to find us:

 Project Repository: https://github.com/geoedf
MyGeoHub CI: https://mygeohub.org

 Email: Carol Song [cxsong@purdue.edu],
Rajesh Kalyanam [rkalyana@purdue.edu]

https://github.com/geoedf
https://mygeohub.org/
mailto:cxsong@purdue.edu
mailto:rkalyana@purdue.edu?subject=GeoEDF

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

