Pegasus Users Group

MEETING

\53
il

GeoEDF: A Framework for Geospatial
Research Workflows

Rajesh Kalyanam

Research Scientist, Purdue Research Computing

02/25/21

GeoEDF Vision

Researchers spend up

®
‘ ‘ to 80% of their time
4 “wrangling data”

4 Make sure

OUR DATA WoRKRL oW Wrda g
M&Mﬁmrm

2. 60 10: g5 gov pre.

g |

nm 53 amazonaws. v

s WM!EW&;— StogecFrod
7 Srovze: Hydrography. NepPcrn

o g0d NHDALUS 1 Oty i 508

L EDB Iip where

~)

S new stufy “Mmrmm-um_“

= Yo need’

aroup
N Adepo

folder, | 9%! the maps from he
o hliegroug rs jecs,
~ For agoregation limaps/expits

Limar wrange s
Evarytheng IOpether

wring code ho

nudomale ahers HPC
poswive Sased o0
' [

=
s -

DR
2 @

Desktop Tooks Science
Gateway

Data Repositories

Remote data repos, smart
devices, streaming data

vJils==

Reusable
Data Connectors

Pluggable
Data Processors

a
<
o3
=
S

Integrated
Active Learning

Resource
Interoperability
Interfaces

e
eh]
wv
o
[oR
=
=]
Q
@
=
[
2
o.
m
i
o
(]
™
=
m
jo R
v
o]
LY
D

GeoEDF Geospatial Data Framework

Cyberinfrastructure
(Campus, XSEDE,

HUBzero, Geospatial
Tools, storage, Solr, ...

Fa
(]]
r

A

Make Science FAIR

OUR DATA WORKFLOW - Final
1. Go to the Science gateway

2. Define "my, o
_Workflow, "
(or use tool GUJ if peeq, eg;??.'

3. Ask GeoEDF to execute/
4. Data and workfioy

QUfDmatfcaﬂy
publjs,
Science gateway ek

Remote data directly usable in
code, seamless workflow

Complexity abstracted away

Reusable data connectors,
processors, and workflows

Automatic provenance capture
& data annotation => FAIR

The GeoEDF Project PURDUE

An Extensible Geospatial Data Framework Towards
FAIR Science

To help data-driven sciences to be more
Findable, Accessible, Interoperable, Reusable

funded by NSF CSSI program award #: 1835822, Oct 2018 - Sep 2023

Multidisciplinary Project Leadership

Jian
Jin

Plant phenotyping &
sensors
Ag & Biologyical
Engineering

Venkatesh
Merwade
Flood modeling

& visualization
Civil Engineering

Carol
Song

Cyberinfrastructure
Research Computing

Jack
Smith

Water Quality
& resource
management
Marshall University

Uris
Baldos

Sustainable
development
Agricultural Economics

Example Workflow from Agricultural Economics

Spatial Data

(IPUMS Land Cover J

and Land Use API

‘ UN FAOSTAT |
AP | | e e g
Crop Production Data v * MU/tldlSClpllnaI'y
Database Creation Tool Aggregation Tools d oma in S Oft en nee d
World Bank . .
(AP J‘ 2L Srlss Climate Water to access diverse
Database Database Change Scarcity
Population, Income Data Moore et al 2018 Liu et al 2017 dataSGtS and
e R Script l R Seript /nteg.ra.te them with
sources existing models
Historical Future Other data
Database Growth Rates sources
Start from scratch
- Some prior work done

SIMPLE
Web App

MYGEOHUB

Reality!

Working through
the specifics
reveals the more
messy details!

GeoEDF Design Principles

Streamline data
wrangling in
research workflows

Enable researchers to
break down a complex
research task into a
collection of data
acquisition and
processing sub-tasks

Promote FAIR
science principles

Integrate GeoEDF and
cyberinfrastructure to
implicitly & explicitly
promote FAIR science
principles

Provide reusable and
scalable workflow
building blocks

Improve the efficiency of
day-to-day research
workflows by enabling
standardization, reuse,
composition, and
scalable execution

GeoEDF Components

Reusable Data Reusable Data
Connectors Processors

Implement various e Implement domain

data access protocols,

agnostic & domain

enable data acquisition specific geospatial
from popular processing operations

reae~nnncitAriAn

GeoEDF

Plug-and-play
Workflow Composer

Enable the
composition of
individual connectors
& processors into

PRV U DY 4 DA

Enable researchers to conceive of geospatial data driven
workflows as a sequence of data acquisition and processing steps
that can be carried out using pre-existing or user contributed

Data Connector Examples

NASA MODIS, SMAP, other Earthdata DAACs

USGS Elevation, land use, hydrography, Gage, NLDI
USDA Soil, land cover, land use

CUASHI Rainfall, Hydroshare resources

EarthStat Crop data

FAO Arable land, harvest data

CIESIN Population data

EPA Water quality

Others (no API yet) Open Data Cubes, Google Earth Engine, ESS-Dive

Data Processor Examples

Domain Reproject, resample, format transformation, filter, mosaic, clip/mask,
Independent aggregate (spatial & temporal), visualization, reclassification
Hydrology Terrain analysis, flood models

Digital Ag Query, spatial/temporal filter, ML training, decision support
Sustainability Downsample, (weighted) aggregate, FEWS models

Plug-and-play Workflow Composer

“* Workflow Framework defining

» Standardized interfaces for connectors and processors
» Syntax and semantics of defining and composing instances of connectors
and processors into scientific workflows

“* Workflow Engine transforming

» “Declarative”, abstract workflows into code executing on heterogeneous
compute resources

GeoEDF in a nutshell

Workflows are sequences
of connector and
processor instances

Connector and
Processor instances
specified in YAML

Connector and
Processor Python
classes

Example Hydrologic Workflow
ﬁ - Indax‘:fﬁnlj a # e P me- .

‘ . | Hydrologic |
o~ - T323 1 model |
—— N S - o . B
NASA DAAC A —
AT Weighted LAI per
‘-f‘{if%%’f% ragion
" Watershed map
Apply GeoEDF principles
NASA DAAC
- Shapefile
- 'CF NASAInput | seor HDFEOSShapefileMask P
- File(s) Connector | [jaie) Processor

Watershed 1
shapefile J

The GeoEDF Workflow

Dynamically

$1: bound
Input: variable
NASAhput:
url: hittp.// files.ntsg.umt.edtoata/NTSG _ProduddOD16/MOD16A2. 105 MERRAGMAHle}

user:rkalyana
password:
Filter:
file:
PathFilter:
pattern: Y%/{yearfD001/* hOOvO8*hdrf
year:
DateTimeHFilter:
pattern: ‘%Y’
start: 07/01/2000

end: 72/31/2005
Workflow period: 7Y

stage

Filters provide bindings for variables

They promote modularization and can
implement complex spatial and temporal
filtering

Filters help restrict the data that is actually
“downloaded”

$2:
HDFShape file EOSMask:
hdffile: $7
shapefile:/home/rkalyana’subs1.shp

Workflow Concretization using Pegasus

4

Connectors need to bind filter variables in order; arbitrary number
of variable bindings may be generated; each binding “retrieves”
arbitrary number of files

Processors may need to process an arbitrary number of files
retrieved by a connector

Each connector or processor turns into its own “sub-workflow”
Top-level DAX builds and executes these sub-workflows as it goes

Sub-workflows only transfer back data necessary to construct the
next "stage” sub-workflow; viz., filter values, file listing

Final step returns outputs

*Connectors/processors can have arbitrary software dependencies
(containerization is a good ideal!)

**Public-private keypair generated for each workflow to encrypt
sensitive strings (viz. any field left blank for user input in workflow definition)

Create data

directory

1

I

workflow

[Create stage 1 sub-]

.

(| N
Execute filters
as soon as fully . Execute
bound NASAInput
y, . ‘
Merge <
\ J
Y
Create stage 2 sub-
workflow
(| N
Execute Execute
Processor on . Processor on
HDF File_1 HDF File_N
- J

Connector/Processor Contribution Process

o Search or jump to...

& geoedf /connectors

<> Code Issues Pull requests

!.! rkalyanapurdue added curl, wget to containers (#8)

.github/workflows test various merge commit options (#6)

datetimefilter added curl, wget to containers (#8)
faoinput added curl, wget to containers (#8)
nasainput added curl, wget to containers (#8)
pathfilter added curl, wget to containers (#8)
_gitignore fixed yaml syntax errors in action
LICENSE Initial commit

README.md Update README.md

(1) Contribute connectors/processors via
GitHub PRs

buildplugins [build
s n Jun 18 in 6m 11s
Set up job
Build geoedf/track-changes-docker-action@v11
Set up Python 3.6
Setup Go 1.13
Install Dependencies
Install Singularity
Install hpcem

Checkout Repo

Track Changes

Qutput Folders

Loop and Build

(2) Detect changes, build Singularity
container, push to registry server

():
= get_client(quiet=)

= ()
= cli.search()
(cont_uri,url) query_res:
= cont_uri.split(':')[0]
= cont_path.split('/')[1])
plugin_name conns:
[plugin_name] = cont_uri

= ()
= cli.search()
(cont_uri,url) query_res:
= cont_uri.split(':')[0]
= cont_path.split('/')[1])
plugin_name procs:
[plugin_name] = cont_uri

(conns,procs)

(3) Query regqistry for list of connector,
processor containers

Cyberinfrastructure Integration B e

- Leveraged
- User

contributions

Cl/CD

pipeline
GitHub > Singularity | _________ Container image
repo Cpntainer !
registry (AWS) |
|
1
GeoEDF

framework

Workflow job

GeoEDF workflow Pegasus
engine

\ 4

A

A

v Result data

/
Workflow
KCI environment manager /

A\ 4

Roadmap

Dec 2020

Sample connectors, processors
CI/CD pipeline in place
Proof-of-concept Jupyter notebook based on Pegasus dev container

Execution on HPC
Integration with MyGeoHub gateway

Release v1.0 available on MyGeoHub, PyPI, GitHub
Sample end-to-end research workflows
Documentation

Workflow monitoring
Data annotation hooks
Cl interoperability and external Cl install

N N N N

<a€Ca

Our Pegasus Feedback

Cyberinfrastructure Integration

Best practices for setting up Pegasus to support (a) multiple users, (b) secure
sensitive information (e.g., catalogs, keys)
Middleware layer with a thin API interface?

New Features
Support for conditionals, loop-until?
High-level monitoring, i.e., what task in what sub-workflow is currently executing?

Thank You!

Where to find us:

Project Repository: https://github.com/geoedf
MyGeoHub CI: https://mygeohub.org

Email: Carol Song [cxsong@purdue.edu],
Rajesh Kalyanam [rkalyana@purdue.edu]

https://github.com/geoedf
https://mygeohub.org/
mailto:cxsong@purdue.edu
mailto:rkalyana@purdue.edu?subject=GeoEDF

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

