

Performing large-scale seismic hazard analysis using Pegasus workflows

Scott Callaghan

Computer Scientist Southern California Earthquake Center

February 25, 2021

Seismic Hazard Analysis

• What will peak earthquake shaking be over the next 50 years?

10

10

10

- Useful information for:
 - Building engineers
 - Disaster planners
 - Insurance agencies
- Estimates produced by
 - 1. Assembling a list of earthquakes
 - 2. Determining how much shaking each event causes

2% in 50 yrs

3. Combining the shaking levels with probabilities

Two-percent probability of exceedance in 50 years map of peak ground acceleration

CyberShake Project

- Developed by the Southern California Earthquake Center (SCEC)
- For each site of interest:
 - Simulate each of 500,000 earthquakes
 - Determine maximum shaking from each
 - Combine with probabilities to produce curve ³
- Repeat process for multiple locations

CyberShake Computational Requirements

Simulation	CPU compute hours	GPU compute hours	Output data
1 location	64,700	2,500	539 GB
Regional study	56,000,000	2,100,000	457 TB

- High degree of automation required for around-the-clock execution
 - Rely heavily on scientific workflow tools: Pegasus-WMS and HTCondor
- Typically target large NSF and DOE-funded supercomputers
 - Workflows orchestrated from SCEC server at USC
- Challenges associated with this scale
 - Remote job submission
 - High-throughput tasks

Automated Remote Job Submission

- CyberShake requires execution of thousands of remote jobs
- Push-based
 - When task are ready to run, send them to resources
 - SSH: keys must be accepted on remote system
 - rvGAHP: daemon on remote system connects to workflow submit host
 - Can be used on systems with two-factor authentication
- Pull-based

task

- Uses "pilot jobs" or HTCondor glideins
- Acquire resources first, then look for tasks
- Results in additional overhead
- Can bundle jobs

resources

High-Throughput Tasks

- Added new capability to CyberShake to calculate higher frequency results
 - Makes results more useful for building engineers
- Requires execution of 75,000 additional tasks
 - Serial
 - Short duration (2 sec 30 min)
- Can't submit these tasks directly to the scheduler.
- Use Pegasus-mpi-cluster (PMC)

PMC

- MPI wrapper around serial or thread-parallel tasks
 - Master-worker paradigm
 - Preserves dependencies
- Simple for workflow user
 - Job starts up on cluster, starts PMC
 - Specify tasks as usual, Pegasus does wrapping
- Uses intelligent scheduling
 - Core counts
 - Memory requirements
- Writes rescue file

CyberShake Study Metrics

- Study conducted over 128 days
- Consumed 6.2 million node-hours (120M core-hours/13,650 core-years)
 - Averaged 2,018 nodes
 - Max of 16,219 nodes (~280,000 cores)
- Ran 39,285 Pegasus jobs across 3 systems
- Pegasus managed 1.2 PB of data
 - 157 TB of data transferred by pegasus-transfer
 - 14.4 TB of final data products staged to USC storage
- Our workflow software stack scales!

Future Directions

- New CyberShake hazard results with higher-frequency codes
 - Planning regional study later this year to rely heavily on PMC
- Integrating improved physics
 - New workflow jobs
 - Larger data management requirements
- Coscheduling of CPU and GPU jobs on same nodes
 - Improves resource utilization
 - Advertise different types of slots using glideins
- Target new systems
 - Run on 12 different clusters in 14 years

Our Pegasus Feedback

- In general, we would benefit from tools which allow us to manage multiple workflows.
- In CyberShake, the unit of work is hazard calculations for a single site, but this requires the execution of multiple workflows. We would benefit from additional tools to manage the campaign.
- When running across multiple systems, we face challenges load-balancing, especially for bottleneck stages like database writes. We would benefit from ways to control the number of jobs at various stages across workflows.

Thank You!