
The Virtual Data System –
a workflow toolkit for

TeraGrid science applications

TeraGrid ’06
Indianapolis, IN
June 12, 2006

Ben Clifford
1

benc@mcs.anl.gov

Gaurang Mehta
3
 gmehta @isi.edu

Karan Vahi
3
 vahi @isi.edu

Michael Wilde
1,2

 wilde@mcs.anl.gov

1
Computation Institute, University of Chicago

2
Mathematics and Computer Science Division,

Argonne National Laboratory
3
Center for Grid Technologies,

USC Information Sciences Institute

VDS Tutorial Outline

Part 1: The concept of Virtual Data

– 1:30 PM: 30 minutes

Part 2: Basics of VDL

– 2:00 PM: 45 minutes

Break: 2:45 – 3:00

Part 3: Pegasus: Grid Workflow Planning

– 3:00 PM: 90 Minutes

Part 4 : VDS in the Science Process

– Summary and Conclusion, Q & A

– 4:30 PM: 30 minutes

VDS Tutorial Lab Exercises

Part 1: Virtual Data Concept

– Ex 1.1: Hello World in VDL

– Ex 1.2: Test the Cosmic Ray example code (locally)

Part 2: Basics of VDL

– Ex 2.1: Running Single Transformations (simplevdl)

– Ex 2.2: Chaining Derivations (bigervdl)

– Ex 2.3: Compound VDL (compoundvdl)

Part 3: Pegasus and Grid Workflow Planning

– EX 3.1: Cataloging data files in the RLS replica system

– Ex 3.2: Setting up the site and transformation catalogs

– Ex 3.3: Running the planner and starting the workflow

– Ex 3.4: Watching workflow progress and debugging

The Virtual Data System Team

Argonne and The University of Chicago:

Ben Clifford, Ian Foster, Yong Zhao, Mike Wilde

The USC Information Sciences Institute:

Ewa Deelman, Carl Kesselman, Gaurang Mehta,

Gurmeet Singh, Mei-Hui Su, Karan Vahi,

Jens Voeckler

Contributions by Jed Dobson, fMRI Data Center,

Dartmouth College, and Luiz Meyer, UFRJ-Brazil,

Doug Scheftner, University of Chicago

VDS Tutorial Outline

Part 1: Concept & applications of Virtual Data

Part 2: VDL - The Virtual Data Language

Part 3: Pegasus: Grid Workflow Planning

Part 4 : VDS in the Science Process

Summary and Conclusion

Virtual Data Concept
Developed by GriPhyN Project –

The Grid Physics Network

Enhance scientific productivity through:

Discovery and application of datasets and

programs at petabyte scale

Enabling use of a worldwide data grid as a

scientific workstation

Virtual Data enables this approach by creating

datasets from workflow “recipes” and

recording their provenance.

Virtual Data and Workflows

Challenge is managing and organizing the

vast computing and storage capabilities

provided by Grids

Workflow expresses computations in a

form that can be readily mapped to Grids

Virtual data keeps accurate track of data

derivation methods and provenance

Grid tools virtualize location and caching

of data, and recovery from failures

mass = 200
decay = WW
stability = 1
LowPt = 20
HighPt = 10000

mass = 200
decay = WW
stability = 1
event = 8

mass = 200
decay = WW
stability = 1
plot = 1

mass = 200
decay = WW
plot = 1

mass = 200
decay = WW
event = 8

mass = 200
decay = WW
stability = 1

mass = 200
decay = WW
stability = 3

mass = 200

mass = 200
decay = WW

mass = 200
decay = ZZ

mass = 200
decay = bb

mass = 200
plot = 1

mass = 200
event = 8

 Virtual Data Application:
 High Energy Physics

 Data Analysis

Work and slide by
Rick Cavanaugh and
Dimitri Bourilkov,
University of Florida

Expressing Workflow in VDL

TR grep (in a1, out a2) {

 argument stdin = ${a1};

 argument stdout = ${a2}; }

TR sort (in a1, out a2) {

 argument stdin = ${a1};

 argument stdout = ${a2}; }

DV grep (a1=@{in:file1}, a2=@{out:file2});

DV sort (a1=@{in:file2}, a2=@{out:file3});

file1

file2

file3

grep

sort

Virtual Data Workflow
Abstracts Grid Details

What must we “virtualize”
to compute on the Grid?

Location-independent computing:

represent all workflow in abstract terms

Declarations not tied to specific entities:

– sites

– file systems

– schedulers

Failures – automated retry for data server

and execution site un-availability

How does Workflow
Relate to Provenance?

Workflow – specifies what to do

Provenance – tracks what was done

Virtual Data integrates these capabilities

Executed

Executing

Executable

Waiting

Query

Edit

ScheduleExecution
environment

What I
Did

What I
Want to

Do

What I
Am Doing

…

VDS Applications

In Devel11000sGTOMO

Image proc

In use32000 (core app runs

250 8-CPU jobs)

FOAM

Ocean/Atmos Model

In use1000sSCEC

Earthquake sim

In Use3-6<10QuarkNet

CosmicRay science

In Use1500KATLAS

HEP Event Simulation

Inspiral In Use2-5~700LIGO

Inspiral/Pulsar

In Use71000sNVO/NASA

Montage/Morphology

In Use140KGADU

Genomics: BLAST,…

In Devel12100sfMRI

AIR, freeSurfer prepro

CS Research2

8

40K

500K

SDSS

Coadd; Cluster Search

StatusLevelsJobs / workflowApplication

Small Montage Workflow

~1200 node workflow, 7 levels
Mosaic of M42 created on

the Teragrid using Pegasus

http://montage.ipac.caltech.edu/

Functional MRI Analysis

Workflow courtesy James Dobson, Dartmouth Brain Imaging Center

LIGO Inspiral Search Application

Describe…

Inspiral workflow application is the work of Duncan Brown, Caltech,

Scott Koranda, UW Milwaukee, and the LSC Inspiral group

Blasting for Protein Knowledge
BLAST compare of complete nr database for sequence similarity

and function characterization
Knowledge Base

PUMA is an interface for the

researchers to be able to find

information about a specific protein

after having been analyzed against

the complete set of sequenced

genomes (nr file ~ approximately 3

million sequences)

Analysis on the Grid

The analysis of the protein sequences

occurs in the background in the grid

environment. Millions of processes are

started since several tools are run to

analyze each sequence, such as finding

out protein similarities (BLAST), protein

family domain searches (BLOCKS), and

structural characteristics of the protein.

Southern California Earthquake Center

SCEC is a collaboration of USC ISI, SDSC, USGS, and the
Incorporated Research Institutions for Seismology

Community Modeling Environment (SCEC/CME) automates
selecting, configuring, and executing models of earthquake
systems.

Creates full 3D simulations of fault-system dynamics.

Can assess and mitigating earthquake risks through Seismic
Hazard Analysis

Work of Philip Maechling and Vipin Gupta, University Of Southern California

Astronomy
Galaxy Morphology
(National Virtual
Observatory)
– Investigates the dynamical

state of galaxy clusters

– Explores galaxy evolution
inside the context of large-
scale structure.

– Uses galaxy morphologies
as a probe of the star
formation and stellar
distribution history of the
galaxies inside the clusters.

– Data intensive
computations involving
hundreds of galaxies in a
cluster

The x-ray emission is shown in blue, and the optical mission is in red. The colored dots are located at the

positions of the galaxies within the cluster; the dot color represents the value of the asymmetry index. Blue

dots represent the most asymmetric galaxies and are scattered throughout the image, while orange are the

most symmetric, indicative of elliptical galaxies, are concentrated more toward the center.

People involved: Gurmeet Singh, Mei-Hui Su, many others

FOAM:
Fast Ocean/Atmosphere Model

250-Member Ensemble
Run on TeraGrid under VDS

FOAM run for

Ensemble Member 1

FOAM run for

Ensemble Member 2

FOAM run for

Ensemble Member N

Atmos

Postprocessing Ocean

Postprocessing for

Ensemble Member 2

Coupl Postprocessing for

Ensemble Member 2

Atmos

Postprocessing for

Ensemble Member 2

Coupl

Postprocessing for

Ensemble Member 2

Results transferred to archival storage

Work of: Rob Jacob (FOAM), Veronica Nefedova (Workflow design and execution)

Remote Directory

Creation for

Ensemble Member 1

Remote Directory

Creation for

Ensemble Member 2

Remote Directory

Creation for

Ensemble Member N

FOAM: TeraGrid/VDSBenefits

Climate
Supercomputer

TeraGrid with
NMI and VDS

FOAM
application by

Rob Jacob,
Argonne; VDS
workflow by

Veronika
Nefedova,
Argonne

Visualization
courtesy Pat
Behling and
Yun Liu, UW
Madison..

Biomedical Imaging Applications

Tomography (NIH-funded work)

Derivation of 3D structure from a
series of 2D electron microscopic
projection images,

Reconstruction and detailed
structural analysis

– complex structures like
synapses

– large structures like dendritic
spines.

Acquisition and generation of
huge amounts of data

Large amount of state-of-the-art
image processing required to
segment structures from
extraneous background.

Dendrite structure to be rendered by

Tomography

Work by Mei-Hui Su (ISI), Mark Ellisman, Steve Peltier, Abel Lin, Thomas Molina (SDSC)

US-ATLAS
Data Challenge 2

Sep 10

Mid July

C
P

U
-d

a
y

Event generation using Virtual Data

ATLAS “Capone”
Event Simulation Production Executor

Reception

– Job received from work distributor

Translation

– Un-marshalling, ATLAS transformation

DAX generation

– VDL tools generate abstract DAG

Input file retrieval from RLS catalog

– Check RLS for input LFNs (retrieval of GUID, PFN)

Scheduling: CE and SE are chosen

Concrete DAG generation and submission

– Pegasus creates Condor DAGman submit files

Capone

Condor-G

schedd

GridMgr

 CE
gatekeeper

gsiftp
WN

SE

Chimera

RLS Monitoring MDS

GridCat

MonALISA

Windmill

Pegasus

ProdDB

VDC

DonQuijote

QuarkNet - Leveraging Virtual Data for
Science Education

Cosmic Ray Data Analysis
a tutorial science application example

Raw Datasets are time series files

– File names of form:
> Data/180.2005.0126.1.raw

> Data/180.2005.0926.0.raw

Set of processing applications in Perl

– ThresholdTimes.pl

– WireDelay.pl

– Combine.pl

– Sort.pl

– Lifetime.pl

– ExtraFunctions.pl

– Plot.pl

Part 1 - Virtual Data Concept
Lab Exercises

10 Minutes

Ex 1.1: Run the Cosmic Ray example

science-code locally

Ex 1.2: Hello World in VDL (local)

VDS Tutorial Outline

Part 1: The concept of Virtual Data

Part 2: Basics of VDL

Part 3: Pegasus: Grid Workflow Planning

Part 4 : VDL Details

Summary and Conclusion

Virtual Data Process

Describe data derivation or analysis steps

in a high-level workflow language (VDL)

VDL is cataloged in a database for sharing

by the community

Grid workflows are generated from VDL

Provenance of derived results stored in

database for assessment or verification

Essence of VDL

Elevates specification of computation to a

logical, location-independent level

Acts as an “interface definition language” at

the shell/application level

Can express composition of functions

Codable in textual and XML form

Often machine-generated to provide ease of

use and higher-level features

Preprocessor provides iteration and variables

Expressing Workflow in VDL

TR grep (in a1, out a2) {

 argument stdin = ${a1};

 argument stdout = ${a2}; }

TR sort (in a1, out a2) {

 argument stdin = ${a1};

 argument stdout = ${a2}; }

DV grep (a1=@{in:file1}, a2=@{out:file2});

DV sort (a1=@{in:file2}, a2=@{out:file3});

file1

file2

file3

grep

sort

Define a “function”
wrapper for an

application

Provide “actual” argument
values for the invocation

Define “formal arguments”
for the application

Define a “call” to invoke
application

Connect applications via
output-to-input
dependencies

Using VDL

Generated directly for low-volume usage

Generated by scripts for production use

Generated by application tool builders as

wrappers around scripts provided for

community use

Generated transparently in an application-

specific portal (e.g. quarknet.fnal.gov/grid)

Generated by drag-and-drop workflow

design tools such as Triana

Terminology

Virtual data

– defining data by the logical workflow needed to

create it virtualizes it with respect to location,

existence, failure, and representation

VDL – Virtual Data Language

– A language (text and XML) that defines the functions

and function calls of a workflow

VDC – Virtual Data Catalog

– The database and schema that store VDL definitions

VDS – Virtual Data System

– The tools to define, store, manipulate and execute

virtual data workflows and query data provenance

Basic VDL Toolkit

Convert between text and XML
representation

Insert, update, remove definitions from a
virtual data catalog

Attach metadata annotations to defintions

Search for definitions

Generate an abstract workflow for a data
derivation request

Multiple interface levels provided:

– Java API, command line, web service

Representing Workflow

Specifies a set of activities and control flow

Sequences information transfer between

activities

VDS uses XML-based notation called

“DAG in XML” (DAX) format

VDC Represents a wide range of workflow

possibilities

DAX document represents steps to create

a specific data product

Abstract and Concrete Workflow

Abstract Workflow (DAX)

– Expressed in terms of logical entities

– Specifies all logical files required to generate the
desired data product from scratch

– Dependencies between the jobs

– Analogous to build style dag

Concrete Workflow

– Expressed in terms of physical entities

– Specifies the location of the data and executables

– Analogous to a make style dag

Executing VDL Workflows

Abstract
workflow

DAGman
DAG

Pegasus
Planner

DAGman &
Condor-G

VDL
Program

Virtual Data
catalog

Virtual Data
Workflow
Generator

Job
Planner

Job
Cleanup

Workflow spec Create Execution Plan Grid Workflow Execution

Run Time Environment
and Provenance Collection

VDL

DAGman
script

Pegasus
Planner

DAGman &
Condor-G

Abstract
workflow

Virtual Data
catalog

Virtual Data
Workflow
Generator

Specify Workflow Create and run DAG Grid Workflow Execution
(on worker nodes)

launcher

launcher

file1

file2

file3

grep

sort

Provenance
data

Provenance
data

Provenance
collector

VDL: Virtual Data Language
Describes Data Transformations

Transformation - “TR”

– Abstract template of program invocation

– Similar to "function definition"

Derivation – “DV”

– “Function call” to a Transformation

– Store past and future:

> A record of how data products were generated

> A recipe of how data products can be generated

Invocation

– Record of a Derivation execution

Example Transformation

TR t1(out a2, in a1, none pa = "500", none

env = "100000") {

 argument = "-p "${pa};

 argument = "-f "${a1};

 argument = "-x –y";

 argument stdout = ${a2};

 profile env.MAXMEM = ${env};

}

$a1

$a2

t1

Example Derivations

DV d1->t1 (

env="20000", pa="600",

a2=@{out:run1.exp15.T1932.summary},

a1=@{in:run1.exp15.T1932.raw},

);

DV d2->t1 (

a1=@{in:run1.exp16.T1918.raw},

a2=@{out.run1.exp16.T1918.summary}

);

Workflow from File Dependencies

TR tr1(in a1, out a2) {

 argument stdin = ${a1};

 argument stdout = ${a2}; }

TR tr2(in a1, out a2) {

 argument stdin = ${a1};

 argument stdout = ${a2}; }

DV x1->tr1(a1=@{in:file1}, a2=@{out:file2});

DV x2->tr2(a1=@{in:file2}, a2=@{out:file3});

file1

file2

file3

x1

x2

VDL and Abstract Workflow

d1

d2

ba

cb

VDL descriptions

User request data file “c”

Abstract Workflow

Executable Workflow Construction
VDL tools used to build an abstract workflow

based on VDL descriptions

Planners (e.g. Pegasus) take the abstract

workflow and produce an executable

workflow for the Grid or other environments

Workflow executors (“enactment engines”)

like Condor DAGMan execute the workflow

Example Workflow

Graph structure

– Fan-in

– Fan-out

– "left" and "right" can

run in parallel

Uses input file

– Register with RLS

Complex file

dependencies

– Glues workflow

findrangefindrange

analyze

preprocess

Workflow step "preprocess"

TR preprocess turns f.a into f.b1 and f.b2

TR preprocess(output b[], input a) {

argument = "-a top";

argument = " –i "${input:a};

argument = " –o " ${output:b};

}

Makes use of the "list" feature of VDL

– Generates 0..N output files.

– Number file files depend on the caller.

Workflow step "findrange"

Turns two inputs into one output

TR findrange(output b, input a1, input a2,

none name="findrange", none p="0.0") {

argument = "-a "${name};

argument = " –i " ${a1} " " ${a2};

argument = " –o " ${b};

argument = " –p " ${p};

}

Uses the default argument feature

Can also use list[] parameters

TR findrange(output b, input a[],

none name="findrange", none p="0.0") {

argument = "-a "${name};

argument = " –i " ${" "|a};

argument = " –o " ${b};

argument = " –p " ${p};

}

Complete VDL workflow

Generate appropriate derivations

DV top->preprocess(b=[@{out:"f.b1"}, @{
out:"f.b2"}], a=@{in:"f.a"});

DV left->findrange(b=@{out:"f.c1"},
a2=@{in:"f.b2"}, a1=@{in:"f.b1"},
name="left", p="0.5");

DV right->findrange(b=@{out:"f.c2"},
a2=@{in:"f.b2"}, a1=@{in:"f.b1"},
name="right");

DV bottom->analyze(b=@{out:"f.d"}, a=[
@{in:"f.c1"}, @{in:"f.c2"});

Compound Transformations

Using compound TR

– Permits composition of complex TRs from basic

ones

– Calls are independent

> unless linked through LFN

– A Call is effectively an anonymous derivation
> Late instantiation at workflow generation time

– Permits bundling of repetitive workflows

– Model: Function calls nested within a function

definition

Compound Transformations (cont)

TR diamond bundles black-diamonds

TR diamond(out fd, io fc1, io fc2, io fb1, io fb2, in fa, p1,

p2) {

 call preprocess(a=${fa}, b=[${out:fb1}, ${out:fb2}]

);

 call findrange(a1=${in:fb1}, a2=${in:fb2},

name="LEFT", p=${p1}, b=${out:fc1});

 call findrange(a1=${in:fb1}, a2=${in:fb2},

name="RIGHT", p=${p2}, b=${out:fc2});

 call analyze(a=[${in:fc1}, ${in:fc2}], b=${fd});

}

Compound Transformations (cont)

Multiple DVs allow easy generator scripts:

DV d1->diamond(fd=@{out:"f.00005"},
fc1=@{io:"f.00004"}, fc2=@{io:"f.00003"},
fb1=@{io:"f.00002"}, fb2=@{io:"f.00001"},
fa=@{io:"f.00000"}, p2="100", p1="0");

DV d2->diamond(fd=@{out:"f.0000B"},
fc1=@{io:"f.0000A"}, fc2=@{io:"f.00009"},
fb1=@{io:"f.00008"}, fb2=@{io:"f.00007"},
fa=@{io:"f.00006"}, p2="141.42135623731", p1="0");

...

DV d70->diamond(fd=@{out:"f.001A3"},
fc1=@{io:"f.001A2"}, fc2=@{io:"f.001A1"},
fb1=@{io:"f.001A0"}, fb2=@{io:"f.0019F"},
fa=@{io:"f.0019E"}, p2="800", p1="18");

Functional MRI Analysis

fMRI Example: AIR Tools

TR air::warp_n_slice(
 in reg_img, in reg_hdr, in sub_img, in sub_hdr, m = "12",
 io warp, sliced, out sliced_img, out sliced_hdr)
{
 call air::align_warp(reg_img=${reg_img}, reg_hdr=${reg_hdr},
 sub_img=${sub_img}, sub_hdr=${sub_hdr},
 m=${m},
 warp = ${out:warp});
 call air::reslice(warp=${in:warp}, sliced=${sliced},
 sliced_img=${sliced_img}, sliced_hdr=${sliced_hdr});
}
TR air::softmean(in sliced_img[], in sliced_hdr[], arg1 = "y",
 arg2 = "null", atlas, out atlas_img, out atlas_hdr)
{
 argument = ${atlas};
 argument = ${arg1} " " ${arg2};
 argument = ${sliced_img};
}

fMRI Example: AIR Tools

DV air::a3472_3->air::softmean(
 sliced_img = [
 @{in:"3472-3_anonymized.sliced.img"},
 @{in:"3472-4_anonymized.sliced.img"},
 @{in:"3472-5_anonymized.sliced.img"},
 @{in:"3472-6_anonymized.sliced.img"}],
 sliced_hdr = [
 @{in:"3472-3_anonymized.sliced.hdr"},
 @{in:"3472-4_anonymized.sliced.hdr"},
 @{in:"3472-5_anonymized.sliced.hdr"},
 @{in:"3472-6_anonymized.sliced.hdr"}],
 atlas = "atlas",
 atlas_img = @{out:"atlas.img"},
 atlas_hdr = @{out:"atlas.hdr"}
);

“DAX” Abstract Workflow
list of jobs and files

<job id="ID000001" namespace="Quarknet.HEPSRCH" name="ECalEnergySum" level="5"
 dv-namespace="Quarknet.HEPSRCH" dv-name="run1aesum">
 <argument><filename file="run1a.event"/> <filename file="run1a.esm"/></argument>
 <uses file="run1a.esm" link="output" dontRegister="false" dontTransfer="false"/>
 <uses file="run1a.event" link="input" dontRegister="false“ dontTransfer="false"/>
</job>
...
<job id="ID000014" namespace="Quarknet.HEPSRCH" name="ReconTotalEnergy" level="3"…
 <argument><filename file="run1a.mis"/> <filename file="run1a.ecal"/> …
 <uses file="run1a.muon" link="input" dontRegister="false" dontTransfer="false"/>
 <uses file="run1a.total" link="output" dontRegister="false" dontTransfer="false"/>
 <uses file="run1a.ecal" link="input" dontRegister="false" dontTransfer="false"/>
 <uses file="run1a.hcal" link="input" dontRegister="false" dontTransfer="false"/>
 <uses file="run1a.mis" link="input" dontRegister="false" dontTransfer="false"/>
</job>

<!--list of all files used -->
 <filename file="ecal.pct" link="inout"/>
 <filename file="electron10GeV.avg" link="inout"/>
 <filename file="electron10GeV.sum" link="inout"/>
 <filename file="hcal.pct" link="inout"/>
 ...

(excerpted for display)

“DAX” Abstract Workflow
control flow graph

 <child ref="ID000003"> <parent ref="ID000002"/> </child>
 <child ref="ID000004"> <parent ref="ID000003"/> </child>
 <child ref="ID000005"> <parent ref="ID000004"/>
 <parent ref="ID000001"/>...
 <child ref="ID000009"> <parent ref="ID000008"/> </child>
 <child ref="ID000010"> <parent ref="ID000009"/>
 <parent ref="ID000006"/>...
 <child ref="ID000012"> <parent ref="ID000011"/> </child>
 <child ref="ID000013"> <parent ref="ID000011"/> </child>
 <child ref="ID000014"> <parent ref="ID000010"/>
 <parent ref="ID000012"/>...
 <parent ref="ID000013"/>...</child>…

(excerpted for display…)

Part 2 - VDL
Lab Exercises

30 Minutes

Ex 2.1: Running Single Transformations
(simplevdl)

Ex 2.2: Chaining Derivations (biggervdl)

Ex 2.3: Compound VDL (compoundvdl)

VDS Tutorial Outline

Part 1: Concept & applications of Virtual Data

Part 2: VDL – The Virtual Data Language

Part 3: Pegasus – Grid Workflow Planning

Part 4 : VDS in the Science Process

Summary and Conclusion

What we’re going to do...

Learn how to run workflows on the grid.

What do we need for it ?

– An abstract workflow description (e.g

QuarkNet Workflow)

– Application executables (QuarkNet, here)

– A Planner to generate a concrete workflow

(like “compiled code” for the grid).

– ...and, of course, a Grid (TeraGrid, here)

Pegasus Section Outline

Planning with Pegasus

– Catalogs used By Pegasus

– Pegasus Components

Executing workflows on the Grid

– Debugging Workflows

Pegasus Advanced Features and Optimizations

Further Reading

Executing VDL Workflows

Abstract
workflow

DAGman
DAG

Pegasus
Planner

DAGman &
Condor-G

VDL
Program

Virtual Data
catalog

Virtual Data
Workflow
Generator

Job
Planner

Job
Cleanup

Workflow spec Create Execution Plan Grid Workflow Execution

Planning with Pegasus

High Level

 Application

 Knowledge

Resource

Information

and Configuration

Data Location

Information

Pegasus Planner

Plan to be submitted

to the grid (e.g

condor submit files)

Abstract Workflow

(DAX) generated

from VDL

specification

Refinement Pipeline

Replica

Catalog

Replica

CatalogTransformati

on Catalog

Site Catalog

Abstract

Workflow

Check Resource

Access

Reduce the

Workflow

Perform Site

Selection

Site Selector

Site Catalog

Cluster

Individual Jobs

Add Transfer

Nodes

Write Submit

Files

Fully

Instantiated

Workflow

DAGMan/

Condog-G

file

Replica

Selector

Replica

Catalog Transformati

on Catalog

Abstract to Concrete, Step 1: Workflow Reduction

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.

Reuse it.

Mark Jobs D and B to delete
Delete Job D and Job B

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Reduced Workflow Workflow after Site

Selection

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

SI

(A)

SI

(f.d)

Workflow with data

stage-in jobs

Legend

Job Mapped to Site A

Job Mapped to Site B

Unmapped Job

Stage-in Job

Step 2: Site Selection & Addition of Data Stage-in Nodes

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

SI

f.ip

SI

f.d

Workflow with Data Stage in

jobs

Legend

Job Mapped to Site A

 Job Mapped to Site B

Unmapped Job

Stage-in Job

C

E

F

A

f.a

f.ip

f.d f.e

SI

f.ip

SI

f.d

SO

f.c

SO

f.op

Workflow with Data Stage out

jobs to final output site

Stage-Out Job

Step 3: Addition of Data Stage-out Nodes

Legend

Job Mapped to Site A

 Job Mapped to Site B

Unmapped Job

Stage-in Job

C

E

F

A

f.a

f.ip

f.d f.e

SI

f.d

SO

f.c

SO

f.op

Stage-Out Job

Workflow with Data Stage

out Jobs to final output site

C

E

F

A

f.a

f.ip

f.d f.e

SI

f.d

SO

f.c

SO

f.op

Workflow with Registration

Job that registers the

generated data

Reg

f.op Registration Job

SI

f.ip

SI

f.ip

Step 4: Addition of Replica Registration Jobs

Legend

Job Mapped to Site A

 Job Mapped to Site B

Unmapped Job

Stage-in Job

Stage-Out Job

C

E

F

A

f.a

f.ip

f.d f.e

SI

f.d

SO

f.c

SO

f.op

Workflow with Registration

Job that registers the

generated data

Reg

f.op
Registration Job

SI

f.ip

C

E

F

A

f.a

f.ip

f.d f.e

SI

f.d

SO

f.c

SO

f.op

Reg

f.op

SI

f.ip
Dir

Dir

Workflow with Directory

Creation Jobs
Make Dir Job

Step 5: Addition of Job-Directory Creation

Legend

Job Mapped to Site A

 Job Mapped to Site B

Unmapped Job

Stage-in Job

Stage-Out Job

Registration Job

C

E

F

A

f.a

f.ip

f.d f.e

SI

f.d

SO

f.c

SO

f.op

Reg

f.op

SI

f.ip
Dir

Dir

Final Concrete Workflow Make Dir Job

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

 Abstract Workflow

Final Result of Abstract-to-Concrete Process

Pegasus Section Outline

Planning with Pegasus

– Catalogs used By Pegasus

– Pegasus Components

Executing workflows on the Grid

– Debugging Workflows

Pegasus Advanced Features and Optimizations

Further Reading

Replica Catalog

Data is replicated for scalability, reliability

and availability

Replica Catalog stores mappings between

logical files and their target locations.

Pegasus uses RLS as a replica catalog to

locate already existing data (raw input

data and data products generated from

previous runs).

Replica Catalog Exercise
(Ex. 3.1 10 minutes)

The VDS rc-client is a command line tool to

interact with RLS.

Practical exercise (Refer Exercise 3.1):

– Use the rc-client to

> Populate the RLS

> Query the RLS

> Remove entries (Offline exercise)

Site Catalog

Contains information about various sites on

which workflows may execute.

For each site following information is stored

– Installed job-managers for different types of

schedulers

– Installed GridFTP servers

– Local Replica Catalogs where data residing in that

site has to be catalogued

– Site Wide Profiles like environment variables

– Work and storage directories

Site Catalog Exercise
(Ex 3.1 10 minutes)

Two clients for generating a site catalog

vds-get-sites

– Allows you to generate a site catalog

> for OSG grid sites by querying GridCAT

> for ISI skynet, Teragrid, UC SofaGrid by querying a SQLLite2

database

genpoolconfig

– Allows you to generate a site catalog

> By specifying information about a site in a textual format in a

file.

> One file per site

Site Catalog Entry

<pool handle="isi_skynet" sysinfo="INTEL32::LINUX"
gridlaunch="/nfs/software/vds/vds/bin/kickstart">

 <profile namespace="vds" key="grid">isi</profile>

 <lrc url="rlsn://smarty.isi.edu" />

 <gridftp url="gsiftp://skynet-data.isi.edu" storage="/nfs/storage01"
major="2" minor="4" patch="3" />

 <gridftp url="gsiftp://skynet-2.isi.edu" storage="/nfs/storage01"
major="2" minor="4" patch="3" />

 <jobmanager universe="vanilla" url="skynet-
login.isi.edu/jobmanager-pbs" major="2" minor="4" patch="3" total-
nodes="93" />

 <jobmanager universe="transfer" url="skynet-
login.isi.edu/jobmanager-fork" major="2" minor="4" patch="3" total-
nodes="93" />

 <workdirectory>/nfs/scratch01</workdirectory>

 </pool>

Transformation Catalog
Transformation Catalog maps logical transformations to their
physical locations

For each transformation following are stored

– logical name of the transformation

– Type of transformation (INSTALLED or STATIC_BINARY)

– Architecture, OS, Glibc version

– the resource on the which the transformation is available

– the URL for the physical transformation

– Profiles that associate runtime parameters like environment
variables, scheduler related information

Also the logical name of the transformation is same as the
ones specified in the VDL . The same name also appears in
the DAX

Transformation Catalog Exercise
(Offline)

tc-client is a command line client that is

primarily used to configure the database

TC

Works even for file based transformation

catalog.

Pegasus Section Outline

Planning with Pegasus

– Catalogs used By Pegasus

– Pegasus Components

Executing workflows on the Grid

– Debugging Workflows

Pegasus Advanced Features and

Optimizations

Further Reading

Pegasus Components

Abstract

Worfklow

Concrete

Workflow
Jobs

VDL Tools

and Catalog

Execution

Planner
(e.g. Pegasus)

Workflow

Executor
(e.g. DAGman)

VDL

Component Configuration using
Properties File

Most of the configuration of VDS is done by properties.

Properties can be specified

– On the command line

– In $HOME/.vdsrc file

– In $VDS_HOME/etc/properties

All properties are described in
$VDS_HOME/doc/properties.pdf

For the tutorial the properties are configured in the
$HOME/.vdsrc file

Pegasus Section Outline

Planning with Pegasus

– Catalogs used By Pegasus

– Pegasus Components

Executing workflows on the Grid

– Debugging Workflows

Pegasus Advanced Features and

Optimizations

Further Reading

Grid Job Submission

Gram jobs PBS Jobs

GRAM, PBS

Teragrid Cluster

Submit Node

(skynet-login.isi.edu)

Condor

DAGMAN/CondorG

Head Node

(tg-login.ncsa.teragrid.org)

Tutorial Grid Components

Plan (vds-plan Exercise 3.3)

As a recap (the whole VDS process is as follows:
VDLC -> VDS-PLAN -> VDS_RUN)

Invokes Pegasus to generate a concrete workflow.

Generates some default options like the name of
the remote work directories that are created for
each workflow on the remote grid sites

An input file (braindump.txt) for the monitoring
daemon

Run (vds-run Exercise 3.3)

Submits the workflow to Condor DAGMAN/
CondorG for remote job submissions

Starts the monitoring daemon (tailstatd) in the
directory containing the condor submit files

Tailstatd parses the condor output and updates the
status of the workflow to a database

Tailstatd updates job status to a text file
jobstate.log in the direcotry containing the condor
submit files.

Pegasus Section Outline

Planning with Pegasus

– Catalogs used By Pegasus

– Pegasus Components

Executing workflows on the Grid

– Debugging Workflows

Pegasus Advanced Features and

Optimizations

Further Reading

Debugging (Exercise 3.4)

The status of the workflow can be determined by
– Looking at the jobstate.log if tailistatd was invoked

– Or looking at the dagman out file (with suffix
.dag.dagman.out)

All jobs in VDS are launched by a wrapper
executable kickstart. Kickstart generates
provenance information including the exit code,
and part of the remote application ‘s stdout.

In case of job failure look at kickstart output of the
failed job.

Pegasus Section Outline

Planning with Pegasus

– Catalogs used By Pegasus

– Pegasus Components

Executing workflows on the Grid

– Debugging Workflows

Pegasus Advanced Features and

Optimizations

Further Reading

Job Clustering (1)

Cluster small running jobs together to

achieve better performance.

Why?

– Each job has scheduling overhead

– Need to make this overhead worthwhile.

– Ideally users should run a job on the grid

that takes at least 10 minutes to execute

More at http://vds.uchicago.edu/vds/doc/userguide/html/H_PegasusJobClustering.html

Or $VDS_HOME/doc/userguide/VDSUG_PegasusJobClustering.xml

Job Clustering(2)

Horizontal Clustering
– Jobs on the same level are clustered into larger jobs

– Clustering parameters can be configured by associating profiles
in Transformation Catalog or Site Catalog.

Vertical Clustering (Soon)

The clustered job can be run on the remote site
– Sequentially using VDS tool seqexec.

– In Parallel using using VDS MPI wrapper mpiexec

Transfer Configurations

Variety of transfer clients may be used

– Set vds.transfer.*.implementation property

– Support for clients like
> RFT

> Stork

> T2 (VDS client that retries in case of failures)

> Transfer (VDS client wrapper around g-u-c)

Variety of refinement strategies maybe used for adding
transfer nodes

– Set vds.transfer.refiner property.

Varying third party transfer settings

– Set vds.transfer.*.thirdparty.sites

– Allows you to specify for which compute sites you want to use for
third party party staging.

Explained in more detail at $VDS_HOME/doc/properties.pdf

Transfer Throttling

Large Sized Workflows result in large number of
transfer jobs being executed at once. Results in

– Grid FTP server overload (connection refused errors
etc)

– May result in a high load on the head node if
transfers are not configured for being executed as
third party transfers

Need to throttle transfers

– Set vds.transfer.refiner property.

– Allows you to create chained transfer jobs or bundles
of transfer jobs

Transfer Throttling by Chaining

Explained in more detail at $VDS_HOME/doc/properties.pdf

Transfer Throttling by Bundling

Explained in more detail at $VDS_HOME/doc/properties.pdf

Transfer of Executables

Allows the user to dynamically deploy scientific

code on remote sites

Makes for easier debugging of scientific code.

The executables are transferred as part of the

workflow

Currently, only statically compiled executables can

be transferred

Selection of what executable to transfer

– Set vds.transformation.selector property.

More at "Pegasus: a Framework for Mapping Complex Scientific Workflows onto Distributed Systems” Scientific

Programming Journal,January 2005

Also explained in the properties file at $VDS_HOME/doc/properties.pdf

Replica Selection

Default replica selection

– Always prefer data present at the compute site, else
select randomly a replica

Restricted Replica Selection

– Can specify preferred sites from which to stage in
data per compute site.

– Can specify sites to ignore for staging in data per
compute site.

Properties to Set (* in name replaced by site
name. * means all sites)

– vds.replica.selector

– vds.replica.*.ignore.stagein.sites

– vds.replica.*.ignore.stagein.sites

Explained in more detail at $VDS_HOME/doc/properties.pdf

Running in different grid setups

Need to specify vds namespace profile keys with the
sites in the site catalog.

Submitting directly to condor pool
– The submit host is a part of a local condor pool

– Bypasses CondorG submissions avoiding Condor/GRAM
delays.

Using Condor GlideIn
– User glides in nodes from a remote grid site to his local

pool

– Condor is deployed dynamically on glided in nodes for e.g.
you glide in nodes from the teragrid site running PBS.

– Only have to wait in the remote queue once when gliding
in nodes.

More at http://vds.uchicago.edu/vds/doc/userguide/html/H_RunningPegasus.htmlOr

$VDS_HOME/doc/userguide/VDSUG_RunningPegasus.xml

Condor GlideIn

Glidein request

PBS runs

Glidein request

Cluster on a public network

Execute Jobs

Head Node

GT4 PBS GRAM

Cluster Worker Nodes

Submit Node

(Collector, Master,

Negotiator, Schedd)

Connect to

Collector

Original Pegasus configuration

Simple scheduling: random or round robin

using well-defined scheduling interfaces.

Deferred Planning through Partitioning

A variety of partitioning algorithms can be implemented

Mega DAG is created
by Pegasus and then
submitted to DAGMan

Pegasus - Further Reading

VDS Documents in VDS distribution in
$VDS_HOME/doc directory

– configuration via properties
$VDS_HOME/doc/properties.pdf

– Userguide in $VDS_HOME/doc/userguide
directory

On the web (often lags latest release)

– http://vds.uchicago.edu/twiki/bin/view/VDS
Web/VDSDocs

– VDL Reference:

Pegasus Papers

Papers on Pegasus (more at http://pegasus.isi.edu)

– "Pegasus: a Framework for Mapping Complex Scientific Workflows onto
Distributed Systems” Scientific Programming Journal,January 2005

– Mapping Abstract Complex Workflows onto Grid Environments, Ewa
Deelman , James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,
Karan Vahi, Kent Blackburn, Albert Lazzarini, Adam Arbree, Richard
Cavanaugh, and Scott Koranda, Journal of Grid Computing, Vol.1, no. 1,
2003, pp. 25-39.

– "Artificial Intelligence and Grids: Workflow Planning and Beyond," Yolanda
Gil, Ewa Deelman, Jim Blythe, Carl Kesselman, and Hongsuda
Tangmurarunkit. IEEE Intelligent Systems, January 2004

– "Transparent Grid Computing: a Knowledge-Based Approach", Jim Blythe,
Ewa Deelman, Yolanda Gil, Carl Kesselman, IAAI 2003

– "The Montage Architecture for Grid-Enabled Science Processing of Large,
Distributed Datasets," J. C. Jacob, D. S. Katz, T. Prince, G. B. Berriman, J.
C. Good, A. C. Laity, E. Deelman, G. Singh, and M.-H. Su, Proceedings of
the Earth Science Technology Conference (ESTC) 2004, June 2004.

For further information

VDS and Pegasus:

– http://vds.isi.edu

– http://pegasus.isi.edu

Mailing Lists

– vds-support@griphyn.org

– vds-discuss@griphyn.org

Workflow Management research group in GGF:

– www.isi.edu/~deelman/wfm-rg

Workshops
– Works06 (http://www.isi.edu/works06/) in

conjunction with HPDC 2006.

– NSF Workflow Workshop
(http://vtcpc.isi.edu/wiki/index.php/Main_Page)

Outline

Part 1: Concept & applications of Virtual Data

Part 2: VDL – The Virtual Data Language

Part 3: Pegasus – Grid Workflow Planning

Part 4 : VDS in the Science Process

Summary and Conclusion

Mapping the Science Process to VDS

Start with a single workflow

Automate the generation of workflow for
sets of files (datasets)

Replicate workflow to explore many
datasets

Change Parameters

Change code – add new transformations

Build new workflows

Leverage availability of provenance info

fMRI Dataset processing

FOREACH BOLDSEQ

DV reorient (# Process Blood O2 Level Dependent Sequence

 input = [@{in: "$BOLDSEQ.img"},

 @{in: "$BOLDSEQ.hdr"}],

 output = [@{out: "$CWD/FUNCTIONAL/r$BOLDSEQ.img"}

 @{out: "$CWD/FUNCTIONAL/r$BOLDSEQ.hdr"}],

 direction = "y",);

END

DV softmean (

 input = [FOREACH BOLDSEQ

 @{in:"$CWD/FUNCTIONAL/r$BOLDSEQ.img"}

 END],

 mean = [@{out:"$CWD/FUNCTIONAL/mean"}]

);

Query Examples

Which TRs can process a "subject" image?
Q: xsearchvdc -q tr_meta dataType subject_image input
A: fMRIDC.AIR::align_warp

Which TRs can create an "ATLAS"?
Q: xsearchvdc -q tr_meta dataType atlas_image output
A: fMRIDC.AIR::softmean

Which TRs have output parameter "warp" and a parameter "options"
Q: xsearchvdc -q tr_para warp output options
A: fMRIDC.AIR::align_warp

Which DVs call TR "slicer"?
Q: xsearchvdc -q tr_dv slicer
A: fMRIDC.FSL::s3472_3_x->fMRIDC.FSL::slicer

 fMRIDC.FSL::s3472_3_y->fMRIDC.FSL::slicer
 fMRIDC.FSL::s3472_3_z->fMRIDC.FSL::slicer

Invocation Provenance

Completion status and

resource usage

Attributes of executable

transformation

Attributes of input and

output files

Outline

Part 1: Concept & applications of Virtual Data

Part 2: VDL - The Virtual Data Language

Part 3: Pegasus: Grid Workflow Planning

Part 4 : VDS in the Science Process

Summary and Conclusion

Virtual Data and Workflows

Addresses the challenge of managing and

organizing the vast computing and storage

capabilities provided by Grids

VDS enables workflow to be expressed in

form that can be readily mapped to Grids

Virtual data keeps accurate track of data

derivation methods and provenance

VDS virtualizes location of applications

and data, and recovery from failures

Benefits of the Virtual Data approach

Virtual Data System provides location-

independent computing: represents all

workflow in abstract terms

Declarations not tied to specific entities:

– sites

– file systems

– schedulers

Failures – automated retry for data server

and execution site un-availability

For further information

VDS software, documentation, papers:

– www.griphyn.org/vds

Pegasus planner:

– http://pegasus.isi.edu

GGF Workflow Management

research group:

– www.isi.edu/~deelman/wfm-rg

Acknowledgements

The technologies and applications described here

were made possible by the following projects and support:

GriPhyN, iVDGL, the Globus Alliance and QuarkNet,

supported by

The National Science Foundation

The Globus Alliance, PPDG, and QuarkNet,

supported by the US Department of Energy,

Office of Science

