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Abstract—In this paper, we consider the problem of data sharing 
in scientific workflows running on the cloud. We present the 
design and evaluation of a peer-to-peer approach to help solve 
this problem. We compare the performance of our peer-to-peer 
file manager with that of two network file systems for storing 
data for a typical data-intensive workflow application. Our 
results show that while our peer-to-peer file manager performs 
significantly better than one of the network file systems tested, it 
does not perform as well as the other. Finally, we discuss the 
various issues that might have affected the performance of our 
peer-to-peer file manager. 

Keywords—Cloud computing; scientific workflows; data sharing;  
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I.  INTRODUCTION 
Workflow applications are being used extensively by 

scientists to tackle complex simulations and data-intensive 
analyses [1,2,3,4]. Traditionally, large-scale workflow 
applications have been run on distributed cyberinfrastructure 
such as HPC clusters and grids. With the recent advent of cloud 
computing, many scientists are investigating the benefits of 
moving their workflow applications to the cloud. This is 
because clouds give workflow developers several advantages 
over traditional HPC systems, such as root access to the 
operating system, control over the entire software environment, 
reproducibility of results through the use of VM images to store 
computational environments, and on-demand provisioning 
capabilities. 

One important question when evaluating the effectiveness 
of cloud platforms for workflows is: How can workflows share 
data in the cloud? Workflows are loosely-coupled parallel 
applications that consist of a set of computational tasks linked 
via data- and control-flow dependencies [5]. Unlike tightly-
coupled parallel applications such as MPI codes in which 
processes communicate directly using network sockets, 
workflows typically communicate by writing data to files. Each 
task in a workflow produces one or more output files that 
become input files to other tasks. In order to function in a 
distributed environment, these files must be accessible by all 
compute nodes. This can be done by transferring the files 
between nodes, or it can be done by using a POSIX-compatible 
network file system. Most HPC clusters provide a network file 
system that is attached to all the compute nodes, but grids and 
clouds typically do not, either because of latency concerns due 
to wide-area networks between clusters in the case of grids, or 
because of the overhead and complexity of virtualization and 

the preference for non-POSIX storage services in clouds (such 
as Amazon S3 [6]).  In order to function in grid and cloud 
environments, workflow systems usually operate by copying 
input and output files from a central storage location to the 
compute node and back to storage for each job. Needless to 
say, this adds substantial overhead because each file needs to 
be transferred multiple times (once when it is created, and once 
for each time it is used). 

An alternative is to cache the files on the compute nodes, 
and transfer them directly between nodes rather than passing 
them through a centralized storage service. This avoids the 
extra transfer, increases the scalability of the system, and 
enables workflow management systems to consider locality 
when scheduling data-intensive workflows. In this paper we 
present the design and evaluation of a peer-to-peer file manager 
based on this idea. We compare its performance with that of 
two network file systems when storing data for a typical data-
intensive workflow application. We test the scalability of 
different storage systems by running the experiments 
repeatedly on different number of nodes provisioned from the 
cloud. 

Our results show that while our P2P file manager performs 
significantly better than NFS [7] (a centralized file system) on 
the benchmark application, it does not perform as well as 
GlusterFS [8] (a distributed file system). 

The rest of this paper is organized as follows: Section II 
discusses related work. Section III describes the motivation for 
peer-to-peer data sharing and provides an overview of the 
architecture of our peer-to-peer file manager.  Section IV gives 
an overview of the execution environment that was set up for 
the experiments on Amazon EC2 [9]. Section V provides the 
results of various benchmarks we ran to test our peer-to-peer 
system and the results of performance comparison between our 
system and various shared file systems. Section VI discusses 
the various issues that might have affected the performance of 
the P2P file manager. Section VII concludes the paper and 
outlines our future work. 

II. RELATED WORK 
Data-intensive workflows encounter various types of data 

management challenges. These challenges are examined in [10] 
and include data discovery, data provenance, data selection, 
data transfer, data storage etc. Our paper provides a peer-to-
peer solution for the problems of data transfer and storage in 
data-intensive workflows. 



This work is an extension of our previous work where we 
compared the cost and performance of several different storage 
systems that can be used to communicate data within a 
scientific workflow running in the cloud [11]. In this paper we 
have extended that work to include a peer-to-peer data sharing 
system and used a larger workflow to compare performance. 

Yan, et al. have conducted research on peer-to-peer 
workflow systems [12]. They developed SwinDeW, a 
decentralized, peer-to-peer workflow management system. In 
comparison, our work is more focused on optimizing data 
movement. Our system is only concerned with the problem of 
data sharing in workflow applications and not on the general 
workflow orchestration problem. 

The problem with centralized servers and data-intensive 
workflows was previously investigated by Barker et al. [13]. 
They proposed an architecture for web services based 
workflow orchestration that uses a centralized orchestration 
engine with distributed data flow. This solution is similar to our 
approach, however, our approach is designed to work with 
task-oriented workflows and uses distributed caches to improve 
performance instead of planning all data movement and 
execution operations ahead of time. 

There are many data management techniques for improving 
the performance and cost of data-intensive workflows. 
Çatalyürek et al. [14] describe a heuristic that models the 
workflow as a hypergraph and considers both data placement 
and task assignment. Using ratios of the storage capacity and 
computing power of execution sites, it generates plans that 
distribute the storage and computational loads among the sites 
in a manner that reduces the cost associated with file transfers. 
Chervenak et al. [15] describe a policy service for data 
management that can improve the performance of data-
intensive workflows by giving advice to the workflow system 
about how and when to transfer data based on its knowledge of 
ongoing transfers, recent transfer performance, and the current 
allocation of resources. 

III. PEER-TO-PEER DATA SHARING 

A. Motivation 
Storage system performance is a critical component in the 

development of data-intensive applications such as scientific 
workflows. When files reside on a central server, it is efficient 
to find the location of the file, but the server can be 
overwhelmed by a large number of requests for data. Thus, 
distributing the files across multiple servers may relieve that 
bottleneck, but it may also impose additional overheads in file 
discovery and retrieval.   

Some of the overheads associated with parallel or 
distributed file systems occur because of the consistency 
constraints imposed on concurrent file access. These 
constraints are not required for workflow files. This is because 
workflow data files are write-once—once they are generated, 
they are not written to again. 

In this paper, we examine a hybrid (P2P) approach, which 
does not have such a central bottleneck—all data transfers are 
done directly between nodes, the only centralized part of the 

system is the index server which can handle loads much greater 
than those encountered in workflow applications. (See Section 
V).  Relying on the write-once property of the target workflow 
applications, our P2P approach does not employ these 
constraints and is thus much simpler and potentially faster. 

B. Architecture 
Our peer-to-peer file manager [16] consists of 3 

components: a replica index service, a cache daemon, and a 
client. The architecture is shown in Figure 1. 

Each compute node stores in its local cache copies of all the 
files generated by jobs that run on that node, or are accessed by 
jobs that run on the node. In order to find input files for a job, 
the system uses a centralized replica index server that stores a 
list of mappings from each logical file name to a set of physical 
locations (URLs) from where a replica of the file can be 
retrieved. When a node needs a file that is not in its local cache, 
it looks it up in the replica index and retrieves it from one of 
the nodes where it is cached. If multiple nodes have copies of 
the requested file, then the node to retrieve the file from is 
chosen randomly. When a node generates a file, it saves it in 
the cache and registers a mapping for it in the replica index. 

1) Replica Index Service 

There is one replica index server (RIS) per cluster. The RIS 
stores mappings from globally unique logical file names 
(LFNs) to physical file names (PFNs) where the data can be 
retrieved. 

The index server is an XML-RPC service written in Python 
and supports a few simple operations:  

• add(lfn, pfn): Adds an LFN to PFN mapping to 
the index. 

• lookup(lfn) => pfn[]: Returns a list of PFNs 
for the given LFN. 

 

Figure 1. Architecture of Peer-to-peer file manager. 

 



• delete(lfn, pfn): Removes an LFN to PFN 
mapping. 

2) Cache daemon 

The cache daemon runs on each compute node to manage a 
local cache of file replicas. It contacts the replica index server 
to locate files that are not in its cache, and to update the index 
server with mappings for files that are added to its cache. 
Cache daemons running on different nodes contact each other 
to directly retrieve files that are not in the local cache. 

The cache daemon is an XML-RPC service written in 
Python that supports these operations: 

• get(lfn, path): Retrieve a file identified by the 
given LFN (from the local or a remote cache) and store 
the contents at a given path in the local file system. 

• put(path, lfn): Store the contents of the file at a 
given path in the cache and register a mapping with the 
index service from the given LFN to a PFN that 
identifies the location of the cached replica. 

• delete(lfn): Remove any cached replica of the file 
identified by the given LFN and remove any mappings 
held by the index server that map the given LFN to 
PFNs that point to the local cache. 

3) Client 

The client is a command-line interface to the index server 
and the cache daemon. The client performs get, put and 
delete commands on the local cache daemon to service 
requests made by the application. 

IV. EXECUTION ENVIRONMENT 
In this section we describe the setup that was used in our 

experiments. All the experiments were performed on Amazon’s 
EC2 [9] infrastructure as a service (IaaS) cloud. 

There are many ways to configure an execution 
environment for workflow applications in the cloud. The 
environment can be deployed entirely in the cloud, or parts of it 
can reside outside the cloud. For this paper we have chosen the 
former approach. In this configuration there is a submit node 
that orchestrates the workflows and manages the replica index 
server, and several worker nodes (compute nodes) that execute 
tasks, store data, and run the cache daemon. Both the submit 
node and the worker nodes run inside the cloud. The setup is 
shown in Figure 2. 

A. Software 
The configuration of the execution environment is based on 

the idea of a virtual cluster [17, 18]. A virtual cluster is a 
collection of virtual machines that have been configured to act 
like a traditional HPC system. Typically, this involves 
installing and configuring job management software, such as a 
batch scheduler, and a data sharing system, such as a network 
file system. The challenge in provisioning a virtual cluster in 
the cloud is collecting the information required to configure the 

cluster software, and then generating configuration files and 
starting services. Instead of performing these tasks manually, 
which can be tedious and error-prone, we created VM images 
which have the required software already installed and wrote 
shell scripts that used the instance-metadata service provided 
by Amazon EC2 to provision and configure the virtual clusters 
for this paper. 

All workflows were planned and executed using the 
Pegasus Workflow Management System [1], which includes 
the Pegasus mapper, DAGMan worfklow engine [19] and the 
Condor schedd task scheduler [20]. Pegasus is used to 
transform a resource-independent, abstract workflow 
description into a concrete plan, which is then executed using 
DAGMan. The latter manages dependencies between 
executable tasks, and Condor schedd manages individual task 
execution. Pegasus was modified to support the peer-to-peer 
file manager by adding hooks into the Pegasus file transfer 
module to support a custom p2p:// URL scheme. These p2p:// 
URLs are used as LFNs in the workflow to tell Pegasus when 
to use the cache daemon client to store and retrieve files. 

A single CentOS 5 virtual machine image was used for both 
the submit host and the worker nodes, and Pegasus and Condor 
were pre-installed on the image. In addition, shell scripts were 
added to the image to generate configuration files and start the 
required services during the boot process. 

B. Resources 
Amazon EC2 offers several different resource 

configurations for virtual machine instances. Each instance 
type is configured with a specific amount of memory, CPUs, 
and local storage. Rather than experimenting with all the 
various instance types, for this paper only the m1.xlarge 
instance type is used. This type is equipped with 8 EC2 
Compute Units (4 virtual cores with 2 EC2 Compute Units 
each), 15 GB RAM, and 1690 GB local disk storage. A 
different choice for worker nodes would result in different 
performance metrics. However, an exhaustive survey of all the 
possible combinations is beyond the scope of this paper. 

 

Figure 2. Execution Environment. 

 



V. EVALUATION 

A. Replica Index Server Throughput 
The performance of the replica index server is important 

because it has the potential to be a significant bottleneck in the 
system. In order to determine if the index server is fast enough, 
we ran a benchmark to see how many lookup operations it can 
handle per second and compared it to the rate required by a 
typical workflow application. 

To measure the throughput of the index server we deployed 
the server on a dedicated EC2 instance and started several 
clients in parallel on a separate EC2 instance. We measured the 
total time required to service 1000 requests from each client as 
we varied the number of parallel clients from 1 to 16. The 
results, shown in Figure 3, indicate that the index server was 
able to handle approximately 650 requests per second without 
any optimizations. 

To determine the query rate required to support workflow 
applications we divided the number of entries in the replica 
index server (RIS) after completion of a Montage 10 degree 
square workflow (described in Section V.C) by the runtime of 
the workflow to determine the average number of requests per 
second that the RIS would be required to support to complete 
this workflow. The results are shown in Table I. 

The results indicate that the average number of requests per 
second generated by the workflow application used in our 
experiments (~10-25 requests/second) is much less than what 
the un-optimized index server is capable of supporting (~650 
requests/second). We expect that this will be the case for most 
workflow applications, however, if the index server becomes a 
bottleneck for larger workflows or larger clusters we can try 
storing the index entries in a Distributed Hash Table or a 
scalable cloud database service such as Amazon SimpleDB 
[21]. 

TABLE I.  MEAN REQUESTS PER SECOND FOR THE REPLICA INDEX 
SERVER 

Number 
of 

workers 

Number of 
entries in RIS 

Workflow 
runtime 

Average number of 
requests per second 

2 63558 6699 9.5 

4 76688 4705 16.3 

16 87073 3704 23.5 

B. Cache Daemon Performance 
To test the cache daemon performance we deployed three 

VMs on Amazon EC2: one for the replica index server, and 
two to run the cache daemon. The cache daemons were 
configured to store data on the local ephemeral disks. Using 
this configuration we performed several experiments to test the 
performance of the put and get operations of the cache daemon. 
Also, since the performance of the cache daemon depends on 
the I/O performance of the disks where the data is stored, and 
the network used to transfer data between the cache daemons, 
we also measured their performance to help explain our results. 

1) Disk and Network Performance 

The performance of the ephemeral disks was measured by 
writing and reading 100MB files using the UNIX dd command. 
To ensure that the file system cache did not affect the 
measurements, the experiment called sync after writing the files 
and the disk cache was flushed between the write and read 
experiments. Each experiment was performed 100 times and 
the mean write performance was determined to be ~38 MB/s 
and the mean read performance to be ~109 MB/s. This 
asymmetry in write and read performance is likely due to the 
well-known “first-write penalty” on Amazon’s ephemeral disks 
[11]. 

The network bandwidth between the two EC2 VMs was 
measured using the UNIX netcat (nc) utility. Netcat was used 
to send 100MB of data from one EC2 VM to another. The 
experiment was repeated 100 times and the average time was 
used to compute the bandwidth between the VMs, which was 
found to be ~89 MB/s. This value is slightly less than what we 
would expect on a gigabit network. 

2) Put Operation Performance 

Clients call the put operation to add files to the local cache 
and register them in the index server. The following actions 
take place when the put operation is invoked: 

• The client sends a put request to the local cache daemon 
specifying the source path to a file to be cached and the 
LFN to use when indexing the file. 

• The file is added to the local cache. 

• The cache daemon sends a request to the index server to 
register the LFN. 

There are two implementations of the code to add files to 
the cache. One implementation copies the file from the source 
path to the cache, leaving the source path untouched. The other 
implementation moves the file from the source path to the 
cache and replaces the source path with a symlink to the file in 
the cache. 

 

Figure 3. Throughput of Replica Index Server. 

 



To measure the performance of the put operation we called 
put for files varying in size from 0 MB to 100 MB. The 
experiment was repeated 100 times for each file size. The mean 
response time for the put operation using both the symlink 
implementation and the copy implementation is shown in Table 
II. 

TABLE II.  MEAN RESPONSE TIME OF PUT OPERATION IN SECONDS 

Implementation  0 MB 1 MB 10 MB 100 MB 
copy 0.007 0.009 0.350 4.360 

symlink 0.008 0.007 0.008 0.008 
 

As expected, the results show that the symlink 
implementation is significantly faster than the copy 
implementation and does not depend on the file size. In 
addition, this experiment indicates that each cache daemon can 
service approximately 125 put operations per second. 

3) Get Operation Performance 

Clients call the get operation to retrieve files from the local 
or remote cache and save them to a local destination path. The 
following actions take place when the get operation is invoked: 

• The client queries the local cache daemon for the LFN. 

• If the file is found in the cache, it is retrieved from the 
local cache and made available at the destination path. 

• If file is not found in the local cache: 

o The local cache daemon queries the replica index 
server to find a remote cache daemon that has the 
file. 

o The local cache daemon requests the file from the 
remote cache daemon. 

o The remote cache daemon reads the file out of its 
cache and transfers it over the network to the local 
cache daemon. 

o The local cache daemon writes the file to the local 
cache and makes it available at the destination 
path. 

• The local cache daemon registers the cached copy of 
the file with the index service 

Like the put operation, there are two implementations of the 
get operation: one that copies the file from the cache to the 
destination path, and one that symlinks the file from the cache 
to the destination path. 

In the case of a cache hit, the get operation is simply the 
inverse of the put operation and therefore has performance that 
is nearly identical to the put operation. In order to measure the 
worst-case performance of the get operation, the experiment 
was set up so that the file was never found in the local cache to 
force the local cache daemon to retrieve the file from the peer 
node. 

The get operation was executed using files ranging in size 
from 0MB to 100 MB. Both the mean response time and the 

effective throughput (in MB/s) were computed. The effective 
throughput was computed by dividing the amount of data 
transferred by the response time. We expect that, without file 
system caching, the effective throughput will be limited by the 
bottleneck in the transfer path, which, base on our earlier disk 
and network benchmarks, is writes to the ephemeral disk (~21 
MB/s). In order to isolate the effects of the file system cache 
we made sure that the cache on the remote node was cleared in 
all experiments. In addition, we created another 
implementation of the cache daemon that calls fsync() on all 
files written to the local cache before returning results to the 
client. 

The results of this experiment for the copy implementation, 
the symlink implementation, and the implementation using 
symlinks and fsync are shown in Tables III and IV. All 
numbers are the mean of 100 experiments. 

TABLE III.  MEAN RESPONSE TIME IN SECONDS FOR THE GET OPERATION 

Implementation 0 MB 1 MB 10 MB 100 MB 
copy 0.016 0.031 0.178 3.951 

symlink 0.017 0.033 0.146 1.841 
symlink+fsync 0.017 0.073 0.373 3.182 

 

TABLE IV.  MEAN EFFECTIVE THROUGHPUT IN MB/S FOR THE GET 
OPERATION 

Implementation 1 MB 10 MB 100 MB 
copy 31.784 56.048 25.310 

symlink 30.571 68.734 54.329 
symlink+fsync 13.776 26.824 31.423 

 
This data illustrates several important points. First, the 

response time for 0 MB files shows that the overhead of the get 
operation is ~17 ms (min response time was 15 ms for 0-byte 
files). This results in a maximum throughput of ~59 requests 
per second (max 67 req/s), which could be a limiting factor in 
system performance. This overhead is a result of the three 
network requests required to get a file: one to the cache 
daemon, one to the index server, and one to the remote cache 
daemon. Second, when the effects of the file system cache are 
accounted for, the performance for 1 MB files is significantly 
less than the average disk bandwidth. This is partially a result 
of the system overhead, which is a significant fraction of the 
total response time for small files. This is important because 
many workflows contain lots of small files. 

C. Workflow Performance Comparison 
We used an astronomy workflow application, Montage 

[23], to compare performance of the peer-to-peer data sharing 
approach with the shared file system approach.  We picked 
Montage, because it was the most affected by the choice of 
storage systems in our prior experiments [11]. 

We compared our P2P system with two different shared file 
systems: NFS [7] and GlusterFS [8]. We measured the 
makespan of the workflow as we varied the number of worker 
nodes from 2 to 16. Makespan is defined as the total amount of 
wall clock time from the moment the first workflow task is 
submitted until the last task completes. The makespan times 
reported in Section V.C.3 do not include the time required to 



boot and configure the VM as this is assumed to be 
independent of the approach used for data sharing. 

1) Benchmark Workflow 

Montage [23] is a data-intensive workflow application that 
creates science-grade astronomical image mosaics using data 
collected from telescopes. The size of a Montage workflow 
depends upon the area of the sky (in square degrees) covered 
by the output mosaic. A small workflow that illustrates the 
structure of Montage is shown in Figure 4. Montage can be 
considered to be a data-intensive workflow because it spends 
more than 95% of its time waiting on I/O operations and only 
5% on computation. 

For the workflow performance experiment we created a 
Montage workflow that generates a 10-degree square mosaic. 
The workflow contains 19,320 tasks, reads 13 GB of input 
data, and produces 88 GB of output data (including temporary 
data). 

2) Network File Systems 

NFS [7] is perhaps the most commonly used network file 
system. NFS is a centralized system with one node that acts as 
the file server for a group of machines. For the workflow 
experiments we used the submit node in EC2 to host the NFS 
file system. We configured the NFS clients to use the async 
option, which allows the NFS server to reply to requests before 

any changes made by the request have been committed to disk. 

GlusterFS [8] is a distributed file system that supports many 
different types of volumes (Distributed, Replicated, Striped and 
their combinations.) GlusterFS volumes are logical collections 
of one or more bricks where each brick is an export directory 
on a node. To create a new volume, one specifies the bricks 
that comprise the volumes and the way files would be 
distributed on those bricks. We used the distribute 
configuration in which files are spread randomly across bricks 
in the volume. We exported one directory from each of the 
worker nodes and one directory from the submit node to make 
up the volume. 

3) Results 

The performance results for Montage are shown in Figure 
5. The results show that both GlusterFS and our P2P system 
significantly outperform NFS as the shared file system. This is 
a result of the fact that NFS does not scale well as the number 
of worker nodes increase because the NFS server becomes a 
bottleneck. In comparison, both the P2P system and GlusterFS 
improve in performance as the number of nodes increase. 
However, neither system has a linear performance increase 
because the structure of the Montage workflow contains 
several sequential bottlenecks that prevent perfect speedup. 
Finally, contrary to our expectations, GlusterFS performs even 
better than our peer-to-peer system. The reasons for this will be 
discussed in the following section. 

VI. DISCUSSION 
We had hoped that, by avoiding the shared file system 

bottleneck and by making the simplifying assumption of write-
once files, we could improve the performance of data-intensive 
workflows. However, using GlusterFS as the shared file system 
outperformed our peer-to-peer solution. There are a number of 
reasons for this. 

Part of the problem is with our implementation. Our 
benchmarks show that the data transfer throughput of our peer-
to-peer file manager is not very high (Section V.B), especially 
for small files. Because Montage is a very data-intensive 
workflow, storage system performance is the limiting factor in 
its performance. In addition, the average file in Montage is ~2 
MB in size, which is small enough that the overhead of the 
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Figure 4. Task Dependencies in the Montage Workflow. 

 

 

Figure 5. Performance of Montage using different storage systems. 



peer-to-peer system has a large impact on the effective 
throughput that can be achieved. In comparison, the GlusterFS 
distribute configuration that was used has very low overhead to 
locate a file (essentially, it just needs to hash the filename). It 
may be possible to reduce overhead in our peer-to-peer system 
by optimizing the code or by rewriting it in a more efficient 
language. 

Another problem may be the lack of locality in file 
accesses. Although the tasks are evenly distributed across the 
compute nodes according to First-Come, First-Served (FCFS) 
scheduling, the data may not be. The critical feature of our 
peer-to-peer file manager is that it enables aggressive caching 
and replication of files on worker nodes. However, if workflow 
tasks are not able to take advantage of that caching because of 
data imbalance and the lack of locality-awareness in task 
scheduling, then performance will not be as good as it could be. 
In the future we plan to investigate data-aware scheduling to 
reduce this problem. 

Another fundamental difficulty with the peer-to-peer 
approach is the inability to do partial file transfers. Whenever a 
task needs to read a file that is not present in the local cache, 
the whole file is transferred from a remote cache even if the 
task only needs to read part of the file. In comparison, 
traditional file systems such as NFS and GlusterFS allow 
processes to seek and read parts of files without reading all of 
the data. In the Montage workflow there are several tasks that 
only require header information from the files. In the NFS and 
GlusterFS configurations these tasks are able to read only the 
portion of the file required while in the peer-to-peer 
configuration the entire file is retrieved from the remote cache. 
Further work is needed to determine what impact this has on 
the total amount of data transferred. 

Another point to note is that GlusterFS is a fully distributed 
file system. It does not have a central data bottleneck as files 
are distributed uniformly across the nodes and transferred 
directly between nodes. GlusterFS also avoids the metadata 
bottleneck that many file systems have by distributing metadata 
storage. For all files and directories, instead of storing 
associated metadata in a set of static data structures, it 
generates the equivalent information on-the-fly algorithmic-
ally. Because of this, there is never any contention for any 
single instance of metadata stored at only one location as each 
node is independent in its algorithmic handling of its own 
metadata. [24] 

Finally, we compared the performance of these storage 
systems using only one data-intensive workflow as the 
benchmark application. It may be the case that our peer-to-peer 
system would perform better relative to GlusterFS on other 
applications. In the future we plan to run experiments with a 
variety of workflow applications. 

VII. CONCLUSION 
In this paper, we examined a peer-to-peer approach for data 

sharing for workflow applications running on the cloud. We 
described the design and implementation of a peer-to-peer file 
manager that uses caching to try and improve the performance 
of write-once workflow applications in distributed 
environments. We expected that the distributed nature of our 

solution and the aggressive use of caching would make the 
peer-to-peer approach more efficient than using a shared file 
system for workflow applications. Although our approach 
performed better than NFS, contrary to our expectations it did 
not perform better than GlusterFS on our benchmark workflow 
application. We discussed the various issues that may have 
caused this. 

Our investigation suggests several possible routes for future 
work. We plan to investigate locality-aware workflow 
scheduling techniques that may improve our system’s cache hit 
rate. We will also look at scheduling techniques that consider 
load balancing (in terms of both I/O and CPU). We also plan to 
investigate code optimizations that may reduce the overhead of 
our approach. Finally, we plan to evaluate our solution on a 
variety of workflow applications to get a broader understanding 
of the benefits and drawbacks of our solution. 
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