
Developing Accurate and Scalable Simulators of
Production Workflow Management Systems with WRENCH

Henri Casanovaa,∗, Rafael Ferreira da Silvab,c,∗∗, Ryan Tanakaa,b, Suraj Pandeya, Gautam Jethwanic, William Kocha, Spencer
Albrechtc, James Oethc, Frédéric Suterd

aInformation and Computer Sciences, University of Hawaii, Honolulu, HI, USA
bUniversity of Southern California, Information Sciences Institute, Marina del Rey, CA, USA
cUniversity of Southern California, Department of Computer Science, Los Angeles, CA, USA

dIN2P3 Computing Center, CNRS, Villeurbanne, France

Abstract

Scientific workflows are used routinely in numerous scientific domains, and Workflow Management Systems (WMSs) have been
developed to orchestrate and optimize workflow executions on distributed platforms. WMSs are complex software systems that
interact with complex software infrastructures. Most WMS research and development activities rely on empirical experiments
conducted with full-fledged software stacks on actual hardware platforms. These experiments, however, are limited to hardware
and software infrastructures at hand and can be labor- and/or time-intensive. As a result, relying solely on real-world experi-
ments impedes WMS research and development. An alternative is to conduct experiments in simulation. In this work we present
WRENCH, a WMS simulation framework, whose objectives are (i) accurate and scalable simulations; and (ii) easy simulation
software development. WRENCH achieves its first objective by building on the SimGrid framework. While SimGrid is recognized
for the accuracy and scalability of its simulation models, it only provides low-level simulation abstractions and thus large software
development efforts are required when implementing simulators of complex systems. WRENCH thus achieves its second objective
by providing high-level and directly re-usable simulation abstractions on top of SimGrid. After describing and giving rationales
for WRENCH’s software architecture and APIs, we present two case studies in which we apply WRENCH to simulate the Pegasus
production WMS and the WorkQueue application execution framework. We report on ease of implementation, simulation accuracy,
and simulation scalability so as to determine to which extent WRENCH achieves its objectives. We also draw both qualitative and
quantitative comparisons with a previously proposed workflow simulator.

Keywords: Scientific Workflows, Workflow Management Systems, Simulation, Distributed Computing

1. Introduction

Scientific workflows have become mainstream in support of
research and development activities in numerous scientific do-
mains [1]. Consequently, several Workflow Management Sys-
tems (WMSs) have been developed [2, 3, 4, 5, 6, 7] that allow
scientists to execute workflows on distributed platforms that
can accommodate executions at various scales. WMSs han-
dle the logistics of workflow executions and make decisions
regarding resource selection, data management, and computa-
tion scheduling, the goal being to optimize some performance
metric (e.g., latency [8, 9], throughput [10, 11], jitter [12], re-
liability [13, 14, 15], power consumption [16, 17]). WMSs are

∗Corresponding address: University of Hawaii Information and Computer
Sciences, POST Building, Rm 317, 1680 East-West Road, Honolulu, HI, USA,
96822
∗∗Corresponding address: USC Information Sciences Institute, 4676 Admi-

ralty Way Suite 1001, Marina del Rey, CA, USA, 90292
Email addresses: henric@hawaii.edu (Henri Casanova),

rafsilva@isi.edu (Rafael Ferreira da Silva), tanaka@isi.edu (Ryan
Tanaka), surajp@hawaii.edu (Suraj Pandey),
gautam.jethwani@usc.edu (Gautam Jethwani), kochwill@hawaii.edu
(William Koch), spencera@usc.edu (Spencer Albrecht), oeth@usc.edu
(James Oeth), frederic.suter@cc.in2p3.fr (Frédéric Suter)

complex software systems that interact with complex software
infrastructures and can thus employ a wide range of designs and
algorithms.

In spite of active WMS development and use in production,
which has entailed solving engineering challenges, fundamen-
tal questions remain unanswered in terms of system designs and
algorithms. Although there are theoretical underpinnings for
most of these questions, theoretical results often make assump-
tions that do not hold with production hardware and software
infrastructures. Further, the specifics of the design of a WMS
can impose particular constraints on what solutions can be im-
plemented effectively, and these constraints are typically not
considered in available theoretical results. Consequently, cur-
rent research that aims at improving and evolving the state of
the art, although sometimes informed by theory, is mostly done
via “real-world” experiments: designs and algorithms are im-
plemented, evaluated, and selected based on experiments con-
ducted for a particular WMS implementation with particular
workflow configurations on particular platforms. As a corol-
lary, from the WMS user’s perspective, quantifying accurately
how a WMS would perform for a particular workflow config-
uration on a particular platform entails actually executing that

Preprint submitted to Future Generation Computer Systems May 20, 2020

workflow on that platform.
Unfortunately, real-world experiments have limited scope,

which impedes WMS research and development. This is be-
cause they are confined to application and platform configura-
tions available at hand, and thus cover only a small subset of the
relevant scenarios that may be encountered in practice. Further-
more, exclusively relying on real-world experiments makes it
difficult or even impossible to investigate hypothetical scenarios
(e.g., “What if the network had a different topology?”, “What
if there were 10 times more compute nodes but they had half as
many cores?”). Real-world experiments, especially when large-
scale, are often not fully reproducible due to shared networks
and compute resources, and due to transient or idiosyncratic
behaviors (maintenance schedules, software upgrades, and par-
ticular software (mis)configurations). Running real-world ex-
periments is also time-consuming, thus possibly making it dif-
ficult to obtain statistically significant numbers of experimental
results. Real-world experiments are driven by WMS implemen-
tations that often impose constraints on workflow executions.
Furthermore, WMSs are typically not monolithic but instead
reuse CyberInfrastructure (CI) components that impose their
own overheads and constraints on workflow execution. Ex-
ploring what lies beyond these constraints via real-world execu-
tions, e.g., for research and development purposes, typically en-
tails unacceptable software (re-)engineering costs. Finally, run-
ning real-world experiments can also be labor-intensive. This
is due to the need to install and execute many full-featured soft-
ware stacks, including actual scientific workflow implementa-
tions, which is often not deemed worthwhile for “just testing
out” ideas.

An alternative to conducting WMS research via real-world
experiments is to use simulation, i.e., implement a software ar-
tifact that models the functional and performance behaviors of
software and hardware stacks of interest. Simulation is used
in many computer science domains and can address the limita-
tions of real-world experiments outlined above. Several simu-
lation frameworks have been developed that target the parallel
and distributed computing domain [18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Some simulation frame-
works have also been developed specifically for the scientific
workflow domain [35, 36, 37, 11, 38, 39, 40].

We claim that advances in simulation capabilities in the field
have made it possible to simulate WMSs that execute large
workflows using diverse CI services deployed on large-scale
platforms in a way that is accurate (via validated simulation
models), scalable (fast execution and low memory footprint),
and expressive (ability to describe arbitrary platforms, complex
WMSs, and complex software infrastructure). In this work, we
build on the existing open-source SimGrid simulation frame-
work [33, 41], which has been one of the drivers of the above
advances and whose simulation models have been extensively
validated [42, 43, 44, 45, 46], to develop a WMS simulation
framework called WRENCH [47]. More specifically, this work
makes the following contributions1:

1A preliminary shorter version of this paper appears in the proceedings

1. We justify the need for WRENCH and explain how it im-
proves on the state of the art.

2. We describe the high-level simulation abstractions pro-
vided by WRENCH that (i) make it straightforward to im-
plement full-fledged simulated versions of complex WMS
systems; and (ii) make it possible to instantiate simulation
scenarios with only few lines of code.

3. Via two case studies with the Pegasus [2] production WMS
and the WorkQueue [49] application execution framework,
we evaluate the ease-of-use, accuracy, and scalability of
WRENCH, and compare it with a previously proposed
simulator, WorkflowSim [35].

This paper is organized as follows. Section 2 discusses re-
lated work. Section 3 outlines the design of WRENCH and
describes how its APIs are used to implement simulators. Sec-
tion 4 presents our case studies. Finally, Section 5 concludes
with a brief summary of results and a discussion of future re-
search directions.

2. Related Work

Many simulation frameworks have been developed for paral-
lel and distributed computing research and development. They
span domains such as HPC [18, 19, 20, 21], Grid [22, 23, 24],
Cloud [25, 26, 27], Peer-to-peer [28, 29], or Volunteer Comput-
ing [30, 31, 32]. Some frameworks have striven to be applicable
across some or all or the above domains [33, 34]. Two conflict-
ing concerns are accuracy (the ability to capture the behavior
of a real-world system with as little bias as possible) and scal-
ability (the ability to simulate large systems with as few CPU
cycles and bytes of RAM as possible). The aforementioned
simulation frameworks achieve different compromises between
these two concerns by using various simulation models. At
one extreme are discrete event models that simulate the “micro-
scopic” behavior of hardware/software systems (e.g., by relying
on packet-level network simulation for communication [50], on
cycle-accurate CPU simulation [51] or emulation for compu-
tation). In this case, the scalability challenge can be handled
by using Parallel Discrete Event Simulation [52], i.e., the sim-
ulation itself is a parallel application that requires a parallel
platform whose scale is at least commensurate to that of the
simulated platform. At the other extreme are analytical mod-
els that capture “macroscopic” behaviors (e.g., transfer times
as data sizes divided by bottleneck bandwidths, compute times
as numbers of operations divided by compute speeds). While
these models are typically more scalable, they must be devel-
oped with care so that they are accurate. In previous work, it
has been shown that several available simulation frameworks
use macroscopic models that can exhibit high inaccuracy [43].

of the 2018 Workshop on Workflows in Support of Large-Scale Science
(WORKS) [48].

2

A number of simulators have been developed that target
scientific workflows. Some of them are stand-alone simula-
tors [35, 36, 37, 11, 53]. Others are integrated with a partic-
ular WMS to promote more faithful simulation and code re-
use [38, 39, 54] or to execute simulations at runtime to guide
on-line scheduling decisions made by the WMS [40].

The authors in [39] conduct a critical analysis of the state-
of-the-art of workflow simulators. They observe that many of
these simulators do not capture the details of underlying infras-
tructures and/or use naive simulation models. This is the case
with custom simulators such as that in [40, 36, 37]. But it is
also the case with workflow simulators built on top of generic
simulation frameworks that provide convenient user-level ab-
stractions but fail to model the details of the underlying infras-
tructure, e.g., the simulators in [35, 38, 11], which build on the
CloudSim [25] or GroudSim [24] frameworks. These frame-
works have been shown to lack in their network modeling ca-
pabilities [43]. As a result, some authors readily recognize that
their simulators are likely only valid when network effects play
a small role in workflow executions (i.e., when workflows are
not data-intensive).

To overcome the above limitations, in [39, 54] the authors
have improved the network model in GroudSim and also use a
separate simulator, DISSECT-CF [27], for simulating cloud in-
frastructures accurately. The authors acknowledge that the pop-
ular SimGrid [33, 41] simulation framework offers compelling
capabilities, both in terms of scalability and simulation accu-
racy. But one of their reasons for not considering SimGrid is
that, because it is low-level, using it to implement a simulator
of a complex system, such as a WMS and the CI services it uses,
would be too labor-intensive. In this work, we address this is-
sue by developing a simulation framework that provides conve-
nient, reusable, high-level abstractions but that builds on Sim-
Grid so as to benefit from its scalable and accurate simulation
models. Furthermore, unlike [38, 39, 54], we do not focus on
integration with any specific WMS. The argument in [39] is that
stand-alone simulators, such as that in [35], are disconnected
from real-world WMSs because they abstract away much of the
complexity of these systems. Instead, our proposed framework
does capture low-level system details (and simulates them well
thanks to SimGrid), but provides high-level enough abstractions
to implement faithful simulations of complex WMSs with min-
imum effort, which we demonstrate via two case studies.

Also related to this work is previous research that has not
focused on providing simulators or simulation frameworks per
se, but instead on WMS simulation methodology. In particu-
lar, several authors have investigated methods for injecting re-
alistic stochastic noise in simulated WMS executions [35, 55].
These techniques can be adopted by most of the aforementioned
frameworks, including the one proposed in this work.

3. WRENCH

3.1. Objective and Intended Users

WRENCH’s objective is to make it possible to study WMSs
in simulation in a way that is accurate (faithful modeling of

real-world executions), scalable (low computation and memory
footprints on a single computer), and expressive (ability to sim-
ulate arbitrary WMS, workflow, and platform scenarios with
minimal software engineering effort). WRENCH is not a sim-
ulator but a simulation framework that is distributed as a C++

library. It provides high-level reusable abstractions for devel-
oping simulated WMS implementations and simulators for the
execution of these implementations. There are two categories
of WRENCH users:

1. Users who implement simulated WMSs – These users are
engaged in WMS research and development activities and
need an “in simulation” version of their current or in-
tended WMS. Their goals typically include evaluating how
their WMS behaves over hypothetical experimental sce-
narios and comparing competing algorithm and system
design options. For these users, WRENCH provides the
WRENCH Developer API (described in Section 3.4) that
eases WMS development by removing the typical diffi-
culties involved when developing, either in real-world or
in simulation mode, a system comprised of distributed
components that interact both synchronously and asyn-
chronously. To this end, WRENCH makes it possible to
implement a WMS as a single thread of control that in-
teracts with simulated CI services via high-level APIs and
must react to a small set of asynchronous events.

2. Users who execute simulated WMSs – These users simu-
late how given WMSs behave for particular workflows on
particular platforms. Their goals include comparing differ-
ent WMSs, determining how a given WMS would behave
for various workflow configurations, comparing different
platform and resource provisioning options, determining
performance bottlenecks, engaging in pedagogic activities
centered on distributed computing and workflow issues,
etc. These users can develop simulators via the WRENCH
User API (described in Section 3.5), which makes it pos-
sible to build a full-fledged simulator with only a few lines
of code.

Users in the first category above often also belong to the sec-
ond category. That is, after implementing a simulated WMS
these users typically instantiate simulators for several experi-
mental scenarios to evaluate their WMS.

3.2. Software Architecture Overview
Figure 1 depicts WRENCH’s software architecture. At the

bottom layer is the Simulation Core, which simulates low-
level software and hardware stacks using the simulation ab-
stractions and models provided by SimGrid (see Section 3.3).
The next layer implements simulated CI services that are com-
monly found in current distributed platforms and used by pro-
duction WMSs. At the time of this writing, WRENCH pro-
vides services in 4 categories: compute services that provide
access to compute resources to execute workflow tasks; stor-
age services that provide access to storage resources for stor-
ing workflow data; network monitoring services that can be
queried to determine network distances; and data registry ser-
vices that can be used to track the location of (replicas of) work-
flow data. Each category includes multiple service implemen-

3

SimGrid::S4U API

Computation Storage Network
Monitoring

Data
Location

Cloud
Batch

Rack

FTP
HTTP

P2P

Vivaldi
perf

SONAR

Replica
Catalog

WRENCH Developer API

WRENCH User API

Simulated
core

software/
hardware

stacks

Simulated
core CI
services

Simulated
production

and
prototype

WMSs

Makeflow

WorkQueue

Pegasus

Research Prototype

Research Prototype

Research Prototype

Simulator
for Workflow

Research

Simulator
for Workflow

Research

Simulator
for Workflow

Research

Simulator
for WMS

Development

Simulator
for WMS

Development

Simulator
for WMS

Development

Simulator
for Distributed

Computing
Education

Simulator
for Distributed

Computing
Education

Simulator
for Distributed

Computing
Education

Figure 1: The four layers in the WRENCH architecture from bottom to top:
simulation core, simulated core services, simulated WMS implementations, and
simulators.

tations, so as to capture specifics of currently available CI ser-
vices used in production. For instance, WRENCH includes a
“batch-scheduled cluster” compute service, a “cloud” compute
service, and a “bare-metal” compute service. The above layer
in the software architecture consists of simulated WMS, that
interact with CI services using the WRENCH Developer API
(see Section 3.4). These WMS implementations, which can
simulate production WMSs or WMS research prototypes, are
not included as part of the WRENCH distribution, but imple-
mented as stand-alone projects. Two such projects are the sim-
ulated Pegasus and Workqueue implementations used for our
case study in Section 4. Finally, the top layer consists of sim-
ulators that configure and instantiate particular CI services and
particular WMSs on a given simulated hardware platform, that
launch the simulation, and that analyze the simulation outcome.
These simulators use the WRENCH User API (see Section 3.5).
Here again, these simulators are not part of WRENCH, but im-
plemented as stand-alone projects.

3.3. Simulation Core

WRENCH’s simulation core is implemented using Sim-
Grid’s S4U API, which provides all necessary abstractions and
models to simulate computation, I/O, and communication ac-
tivities on arbitrary hardware platform configurations. These
platform configurations are defined by XML files that specify
network topologies and endpoints, compute resources, and stor-
age resources [56].

At its most fundamental level, SimGrid provides a Concur-
rent Sequential Processes (CSP) model: a simulation consists of
sequential threads of control that consume hardware resources.

Algorithm 1 Blueprint for a WMS execution

1: procedure Main(work f low)
2: Obtain list of available services
3: Gather static information about the services
4: while work f low execution has not completed/failed do
5: Gather dynamic service/resource information
6: Make data/computation scheduling decisions
7: Interact with services to enact decisions
8: Wait for and react to the next event
9: end while

10: return
11: end procedure

These threads of control can implement arbitrary code, ex-
change messages via a simulated network, can perform com-
putation on simulated (multicore) hosts, and can perform I/O
on simulated storage devices. In addition, SimGrid provides
a virtual machine abstraction that includes a migration feature.
Therefore, SimGrid provides all the base abstractions necessary
to implement the classes of distributed systems that are relevant
to scientific workflow executions. However, these abstractions
are low-level and a common criticism of SimGrid is that im-
plementing a simulation of a complex system requires a large
software engineering effort. A WMS executing a workflow us-
ing several CI services is a complex system, and WRENCH
builds on top of SimGrid to provide high-level abstractions so
that implementing this complex system is not labor-intensive.

We have selected SimGrid for WRENCH for the following
reasons. SimGrid has been used successfully in many dis-
tributed computing domains (cluster, peer-to-peer, grid, cloud,
volunteer computing, etc.), and thus can be used to simulate
WMSs that execute over a wide range of platforms. SimGrid
is open source and freely available, has been stable for many
years, is actively developed, has a sizable user community, and
has provided simulation results for over 350 research publica-
tions since its inception. SimGrid has also been the object of
many invalidation and validation studies [42, 43, 44, 45, 46],
and its simulation models have been shown to provide com-
pelling advantages over other simulation frameworks in terms
of both accuracy and scalability [33]. Finally, most SimGrid
simulations can be executed in minutes on a standard laptop
computer, making it possible to perform large numbers of sim-
ulations quickly with minimal compute resource expenses. To
the best of our knowledge, among comparable available simu-
lation frameworks (as reviewed in Section 2), SimGrid is the
only one to offer all the above desirable characteristics.

3.4. WRENCH Developer API

With the Developer API, a WMS is implemented as a single
thread of control that executes according to the pseudo-code
blueprint shown in Algorithm 1. Given a workflow to execute,
a WMS first gathers information about all the CI services it can
use to execute the workflow (lines 2-3). Examples of such in-
formation include the number of compute nodes provided by a
compute service, the number of cores per node and the speed of
these cores, the amount of storage space available in a storage

4

service, the list of hosts monitored by a network monitoring ser-
vice, etc. Then, the WMS iterates until the workflow execution
is complete or has failed (line 4). At each iteration it gathers
dynamic information about available services and resources if
needed (line 5). Example of such information include currently
available capacities at compute or storage services, current net-
work distances between pairs of hosts, etc. Based on resource
information and on the current state of the workflow, the WMS
can then make whatever scheduling decisions it sees fit (line
7). It then enacts these decisions by interacting with appropri-
ate services. For instance, it could decide to submit a “job” to
a compute service to execute a ready task on some number of
cores at some compute service and copy all produced files to
some storage service, or it could decide to just copy a file be-
tween storage services and then update a data location service
to keep track of the location of this new file replica. It could
also submit one or more pilot jobs [57] to compute services
if they support them. It is the responsibility of the developer
to implement all decision-making algorithms employed by the
WMS. At the end of the iteration, the WMS simply waits for a
workflow execution event to which it can react if need be. Most
common events are job completions/failures and data transfer
completions/failures.

The WRENCH Developer API provides a rich set of meth-
ods to create and analyze a workflow and to interact with CI
services to execute a workflow. These methods were designed
based on current and envisioned capabilities of current state-
of-the-art WMSs. We refer the reader to the WRENCH Web
site [47] for more information on how to use this API and for
the full API documentation. The key objective of this API
is to make it straightforward to implement a complex system,
namely a full-fledged WMS that interact with diverse CI ser-
vices. We achieve this objective by providing simple solutions
and abstractions to handle well-known challenges when im-
plementing a complex distributed system (whether in the real
world or in simulation), as explained hereafter.

SimGrid provides simple point-to-point communication be-
tween threads of control via a mailbox abstraction. One of the
recognized strengths of SimGrid is that it employs highly ac-
curate and yet scalable network simulation models. However,
unlike some of its competitors, it does not provide any higher-
level simulation abstractions meaning that distributed systems
must be implemented essentially from scratch, with message-
based interactions between processes. All message-based inter-
action is abstracted away by WRENCH, and although the sim-
ulated CI services exchange many messages with the WMS and
among themselves, the WRENCH Developer API only exposes
higher-level interaction with services (“run this job”, “move this
data”) and only requires that the WMS handle a few events. The
WMS developer thus completely avoids the need to send and
receive (and thus orchestrate) network messages.

Another challenge when developing a system like a WMS is
the need to handle asynchronous interactions. While some ser-
vice interactions can be synchronous (e.g., “are you up?”, “tell
me your current load”), most need to be asynchronous so that
the WMS retains control. The typical solution is to maintain
sets of request handles and/or to use multiple threads of con-

trol. To free the WMS developer from these responsibilities,
WRENCH provides already implemented “managers” that can
be used out-of-the-box to take care of asynchronicity. A WMS
can instantiate such managers, which are independent threads
of control. Each manager transparently interacts with CI ser-
vices, maintains a set of pending requests, provides a simple
API to check on the status of these requests, and automati-
cally generates high-level workflow execution events. For in-
stance, a WMS can instantiate a “job manager” through which
it will create and submit jobs to compute services. It can at
any time check on the status of a job, and the job manager in-
teracts directly (and asynchronously) with compute services so
as to generate “job done” or “job failed” events to which the
WMS can react. In our experience developing simulators from
scratch using SimGrid, the implementation of asynchronous in-
teractions with simulated processes is a non-trivial development
effort, both in terms of amount of code to write and difficulty
to write this code correctly. We posit that this is one of the rea-
sons why some users have preferred using simulation frame-
works that provide higher-level abstractions than SimGrid even
though they offer less attractive accuracy and/or scalability fea-
tures. WRENCH provides such higher-level abstractions to the
WMS developers, and as a result implementing a WMS with
WRENCH can be straightforward.

Finally, one of the challenges when developing a WMS is
failure handling. It is expected that compute, storage, and net-
work resources, as well as the CI services that use them, can
fail through the execution of the WMS. SimGrid has the capa-
bility to simulate arbitrary failures via availability traces. Fur-
thermore, failures can occur due to the WMS implementation
itself, e.g., if it fails to check that the operations it attempts are
actually valid, if concurrent operations initiated by the WMS
work at cross purposes. WRENCH abstracts away all these
failures as C++ exceptions that can be caught by the WMS im-
plementation, or caught by a manager and passed to the WMS
as workflow execution events. Regardless, each failure exposes
a failure cause, which encodes a detailed description of the fail-
ure. For instance, after initiating a file copy from a storage ser-
vice to another storage service, a “file copy failed” event sent
to the WMS would include a failure cause that could specify
that when trying to copy file x from storage service y to storage
service z, storage service z did not have sufficient storage space.
Other example failure causes could be that a network error oc-
curred when storage service y attempted to receive a message
from storage service z, or that service z was down. All CI ser-
vices implemented in WRENCH simulate well-defined failure
behaviors, and failure handling capabilities afforded to simu-
lated WMSs can actually allow more sophisticated failure toler-
ance strategies than currently done or possible in real-world im-
plementations. But more importantly, the amount of code that
needs to be written for failure handling in a simulated WMS is
minimal.

Given the above, WRENCH makes it possible to implement
a simulated WMS with very little code and effort. The example
WMS implementation provided with the WRENCH distribu-
tion, which is simple but functional, is under 200 lines of C++

(once comments have been removed). See more discussion of

5

the effort needed to implement a WMS with WRENCH in the
context of our case studies (Section 4).

3.5. WRENCH User API

With the User API one can quickly build a simulator, which
typically follows these steps:

1. Instantiate a platform based on a SimGrid XML platform
description file;

2. Create one or more workflows;
3. Instantiate services on the platform;
4. Instantiate one or more WMSs telling each what services

are at its disposal and what workflow it should execute
starting at what time;

5. Launch the simulation; and
6. Process the simulation outcome.

The above steps can be implemented with only a few lines
of C++. An example is provided and described in Appendix
A. This example showcases only the most fundamental fea-
tures of the WRENCH User API, and we refer the reader to
the WRENCH Web site [47] for more detailed information on
how to use this API and for the full API documentation. In the
future this API will come with Python binding so that users can
implement simulators in Python.

3.6. Simulation Debugging and Visualization

Analyzing and interpreting simulation logs is often a labor-
intensive process, and users of simulators typically develop sets
of scripts for parsing and extracting specific knowledge from
the logs. In order to provide WRENCH users with a rapid,
first insight on their simulation results, we have been devel-
oping a Web-based “dashboard” that compiles simulation logs
into a set of tabular and graphical JavaScript components. The
dashboard presents overall views on task life-cycles, showing
breakdowns between compute and I/O operations, as well as a
Gantt chart and 2- and 3-dimensional plots of task executions
and resource usage during the simulated workflow execution.
An overview of energy consumption per compute resource can
also be visualized in the dashboard. The dashboard is currently
under development and will be available for users in the next
WRENCH release. Figure 2 shows a screenshot of a simple
simulated workflow execution.

4. Case Study: Simulating production WMSs

In this section, we present two WRENCH-based simulators
of a state-of-the-art WMS, Pegasus [2], and an application exe-
cution framework, WorkQueue [49], as case studies for evalua-
tion and validation purposes.

Pegasus is being used in production to execute workflows for
dozens of high-profile applications in a wide range of scientific
domains [2]. Pegasus provides the necessary abstractions for
scientists to create workflows and allows for transparent execu-
tion of these workflows on a range of compute platforms includ-
ing clusters, clouds, and national cyberinfrastructures. During
execution, Pegasus translates an abstract resource-independent

Figure 2: Screenshot of the Web-based WRENCH dashboard that shows,
among other information not displayed here, execution details of each work-
flow task and an interactive Gantt chart of the task executions.

workflow into an executable workflow, determining the specific
executables, data, and computational resources required for the
execution. Workflow execution with Pegasus includes data
management, monitoring, and failure handling, and is man-
aged by HTCondor DAGMan [58]. Individual workflow tasks
are managed by a workload management framework, HTCon-
dor [59], which supervises task executions on local and remote
resources. Workflow executions with Pegasus follow a “push
model,” i.e., a task is bound to a particular compute resource
at the onset of the execution and is always executed on that re-
source if possible.

WorkQueue is being used in production by a wide range of
researchers across many scientific domains for building large-

6

Job Submission Service

WRENCH Pegasus Simulator

pegasus-run

Pe
ga

su
s

D
A

G
M

an
H

TC
on

do
r

master schedd shadow

Central Manager Service

configuration

scheduler
DAGMan monitor

master negotiator collector

Job Execution Service

master startd starter

Figure 3: Overview of the WRENCH Pegasus simulation components, includ-
ing components for DAGMan and HTCondor frameworks. Red boxes denote
Pegasus services developed with WRENCH’s Developer API, and white boxes
denote WRENCH reused components.

scale master-worker applications that span thousands of ma-
chines drawn from clusters, clouds, and grids [60]. WorkQueue
allows users to define tasks, submit them to a workqueue ab-
straction, and wait for their completions. During execution,
WorkQueue starts standard worker processes that can run on
any available compute resource. These worker processes per-
form data transfers and execute tasks, making it possible to ex-
ecute workflows. Worker processes can also be submitted for
execution on HTCondor pools, which is the approach evaluated
in this paper. Workflow executions with WorkQueue follow a
“pull model,” i.e., late-binding of tasks to compute resources
based on when resources becomes idle.

4.1. Implementing Pegasus with WRENCH

Since Pegasus relies on HTCondor, first we have imple-
mented the HTCondor services as simulated core CI services,
which together form a new Compute Service that exposes the
WRENCH Developer API. This makes HTCondor available
to any WMS implementation that is to be simulated using
WRENCH, and has been included as part of the growing set
of simulated core CI services provided by WRENCH.

HTCondor is composed of six main service daemons
(startd, starter, schedd, shadow, negotiator, and
collector). In addition, each host on which one or more
of these daemons is spawned must also run a master daemon,
which controls the execution of all other daemons (including
initialization and completion). The bottom part of Figure 3
depicts the components of our simulated HTCondor implemen-
tation, where daemons are shown in red-bordered boxes. In our
simulator we implement the 3 fundamental HTCondor services,
implemented as particular sets of daemons, as depicted in the
bottom part of Figure 3 in borderless white boxes. The Job
Execution Service consists of a startd daemon, which adds
the host on which it is running to the HTCondor pool, and
of a starter daemon, which manages task executions on this
host. The Central Manager Service consists of a collector

daemon, which collects information about all other daemons,
and of a negotiator daemon, which performs task/resource

matchmaking. The Job Submission Service consists of a schedd
daemon, which maintains a queue of tasks, and of several
instances of a shadow daemon, each of which corresponds to a
task submitted to the HTCondor pool for execution.

Given the simulated HTCondor implementation above, we
then implemented the simulated Pegasus WMS, including the
DAGMan workflow engine, using the WRENCH Developer
API. This implementation instantiates all services and parses
the workflow description file, the platform description file, and
a Pegasus-specific configuration file. DAGMan orchestrates the
workflow execution (e.g., a task is marked as ready for execu-
tion once all its parent tasks have successfully completed), and
monitors the status of tasks submitted to the HTCondor pool
using a pull model, i.e., task status is fetched from the pool at
regular time intervals. The top part of Figure 3 depicts the com-
ponents of our simulated Pegasus implementation (each shown
in a red box).

By leveraging WRENCH’s high-level simulation abstrac-
tions, implementing HTCondor as a reusable core WRENCH
service using the Developer API required only 613 lines of
code. Similarly, implementing a simulated version of Pegasus,
including DAGMan, was done with only 666 lines of code (127
of which are merely parsing simulation configuration files).
These numbers include both header and source files, but ex-
clude comments. We argue that the above corresponds to minor
simulation software development efforts when considering the
complexity of the system being simulated.

Service implementations in WRENCH are all parameteriz-
able. For instance, as services use message-based communica-
tions it is possible to specify all message payloads in bytes (e.g.,
for control messages). Other parameters encompass various
overheads, either in seconds or in computation volumes (e.g.,
task startup overhead on a compute service). In WRENCH,
service implementations come with default values for all these
parameters, but it is possible to pick custom values upon service
instantiation. The process of picking parameter values so as to
match a specific real-world system is referred to as simulation
calibration. We calibrated our simulator by measuring delays
observed in event traces of real-world executions for workflows
on hardware/software infrastructures (see Section 4.3).

The simulator code, details on the simulation calibration pro-
cedure, and experimental scenarios used in the rest of this sec-
tion are all publicly available online [61].

4.2. Implementing WorkQueue with WRENCH
WorkQueue implements a master-worker paradigm by which

running worker processes can be assigned work dynamically.
In our simulator, we implement workers as pilot jobs, a popular
mechanism for late-binding of computation to resources [57],
which is implemented in WRENCH. As WorkQueue does not
provide automated mechanisms for starting workers, i.e., trig-
gering pilot job submissions, at runtime, our simulated imple-
mentation limits the number of concurrently running pilot jobs
based on available compute resources (i.e., cores are not over-
subscribed). The simulator implementation has two main com-
ponents: (1) a workflow system for orchestrating tasks execution
and assigning compute tasks to workers; and (2) a scheduler

7

for submitting pilot jobs to compute services. As WRENCH
provides a consistent interface across all compute services, our
simulator can simulate the execution of WorkQueue on any
compute service provided they are configured to support pilot
job execution.

Due to WRENCH’s providing high-level simulation abstrac-
tions, implementing WorkQueue using the WRENCH Devel-
oper API requires only 485 lines of code (113 of which are
merely parsing simulation configuration files). These numbers
include both header and source files, but exclude comments.
Similarly to the WRENCH-based Pegasus simulator, we ar-
gue that the simulation software development effort is minimal
when considering the complexity of the system being simu-
lated. The simulator code, details on the simulation calibration
procedure, and experimental scenarios used in the rest of this
section are all publicly available online [62].

4.3. Experimental Scenarios

We consider experimental scenarios defined by particular
workflow instances to be executed on particular platforms. Due
to the lack of publicly available detailed workflow execution
traces (i.e., execution logs that include data sizes for all files,
all execution delays, etc.), we have performed real workflow
executions with Pegasus and WorkQueue, and collected raw,
time-stamped event traces from these executions. These traces
form the ground truth to which we can compare simulated exe-
cutions. We consider these workflow applications:
• 1000Genome [63]: A data-intensive workflow that identi-

fies mutational overlaps using data from the 1000 genomes
project in order to provide a null distribution for rigor-
ous statistical evaluation of potential disease-related muta-
tions. We consider a 1000Genome instance that comprises
71 tasks.
• Montage [2]: A compute-intensive astronomy workflow

for generating custom mosaics of the sky. For this ex-
periment, we ran Montage for processing 1.5 and 2.0
square degrees mosaic 2MASS. We thus refer to each con-
figuration as Montage-1.5 and Montage-2.0, respectively.
Montage-1.5, resp. Montage-2.0, comprises 573, resp.
1,240, tasks.
• SAND [64]: A compute-intensive bioinformatics workflow

for accelerating genome assembly. For this experiment,
we ran SAND for a full set of reads from the Anopheles
gambiae Mopti form. We consider a SAND instance that
comprises 606 tasks.

We use these platforms, deploying on each a submit node
(which runs Pegasus and DAGMan or WorkQueue, and HT-
Condor’s job submission and central manager services), four
worker nodes (4 or 24 cores per node / shared file system), and
a data node in the WAN:
• ExoGENI: A widely distributed networked infrastructure-

as-a-service testbed representative of a “bare metal” plat-
form. Each worker node is a 4-core 2.0GHz processor with
12GiB of RAM. The bandwidth between the data node and
the submit node was ∼0.40 Gbps, and the bandwidth be-
tween the submit and worker nodes was ∼1.00 Gbps.

• AWS: Amazon’s cloud platform, on which we use two
types of virtual machine instances: t2.xlarge and
m5.xlarge. The bandwidth between the data node and
the submit node was ∼0.44 Gbps, and the bandwidth be-
tween the submit and worker nodes on these instances
were ∼0.74 Gbps and ∼1.24 Gbps, respectively.
• Chameleon: An academic cloud testbed, on which we use

homogeneous standard cloud units to run an HTCondor
pool. Each unit consists of a 24-core 2.3GHz proces-
sor with 128 GiB of RAM. The bandwidth between the
submit node and worker nodes on these instances were
∼10.00 Gbps.

To evaluate the accuracy of our simulators, we con-
sider 4 particular experimental scenarios: 1000Genome on
ExoGENI, Montage-1.5 on AWS-t2.xlarge, Montage-2.0 on
AWS-m5.xlarge, and SAND on Chameleon. The first three
scenarios are performed using Pegasus, and the last one is per-
formed using WorkQueue. For each scenario we repeat the real-
world workflow execution 5 times (since real-world executions
are not perfectly deterministic), and also run a simulated execu-
tion execution using the WRENCH-based simulators described
in the previous section. For each execution, real-world or sim-
ulated, we keep track of the overall application makespan, but
also of time-stamped individual execution events such as task
submission and completions dates.

4.4. Pegasus: Simulation Accuracy
The fourth column in Table 1 shows average relative differ-

ences between actual and simulated makespans. We see that
simulated makespans are close to actual makespans for all three
Pegasus scenarios (average relative error is below 5%). One of
the key advantages of building WRENCH on top of SimGrid is
that WRENCH simulators benefit from the high-accuracy net-
work models in SimGrid. In particular, these models capture
many features of the TCP protocol (without resorting to packet-
level simulation). And indeed, when comparing real-world and
simulated executions we observe average relative error below
3% for data movement operations. Furthermore, the many pro-
cesses involved in a workflow execution interact by exchanging
(typically small) control messages, and our simulators simulate
these message exchanges. For instance, each time an output
file is produced by a task a data registry service is contacted so
that a new entry can be added to its database of file replicas,
which incurs some communication overhead. When comparing
real-world to simulated executions we observe average relative
simulation error below 1% for these data registration overheads.
Overall, a key reason for the high accuracy of our simulators is
that they simulate data and control message transfers accurately.

To draw comparisons with a state-of-the-art simulator, we re-
peated the above Pegasus simulation experiments using Work-
flowSim [35]. WorkflowSim simulates workflow executions
based on execution models similar to that of Pegasus and is
built on top of the CloudSim simulation framework [25]. How-
ever, WorkflowSim does not provide a detailed simulated HT-
Condor implementation, and does not offer the same simulation
calibration capabilities as WRENCH. Nevertheless, we have
painstakingly calibrated the WorkflowSim simulator so that it

8

Experimental Scenario Avg. Makespan Task Submissions Tasks completions
Workflow System Platform Error (%) p-value distance p-value distance

1000Genome Pegasus ExoGENI 1.10 ±0.28 0.06 ±0.01 0.21 ±0.04 0.72 ±0.06 0.12 ±0.01
Montage-1.5 Pegasus AWS-t2.xlarge 4.25 ±1.16 0.08 ±0.01 0.16 ±0.03 0.12 ±0.05 0.21 ±0.02
Montage-2.0 Pegasus AWS-m5.xlarge 3.37 ±0.46 0.11 ±0.03 0.06 ±0.02 0.10 ±0.01 0.11 ±0.01

SAND WorkQueue Chameleon 3.96 ±1.04 0.06 ±0.01 0.11 ±0.02 0.09 ±0.02 0.09 ±0.03

Table 1: Average simulated makespan error (%), and p-values and Kolmogorov-Smirnov (KS) distances for task submission and completion dates, computed for 5
runs of each of our 4 experimental scenarios.

models the hardware and software infrastructures of our ex-
perimental scenarios as closely as possible. For each of the
3 Pegasus experimental scenarios, we find that the relative av-
erage makespan percentage error is 12.09 ±2.84, 26.87 ±6.26,
and 13.32 ±1.12, respectively, i.e., from 4x up to 11x larger
than the error values obtained with our WRENCH-based simu-
lator. The reasons for the discrepancies between WorkflowSim
and real-world results are twofold. First, WorkflowSim uses
the simplistic network models in CloudSim (see discussion in
Section 2) and thus suffers from simulation bias w.r.t. com-
munication times. Second, WorkflowSim does not capture all
the relevant system details of the system and of the workflow
execution. By contrast, our WRENCH-based simulator bene-
fits from the accurate network simulation models provided by
SimGrid, and it does capture low-level relevant details although
implemented with only a few hundred lines of code.

In our experiments, we also record the submission and com-
pletion dates of each task, thus obtaining empirical cumula-
tive density functions (ECDFs) of these times, for both real-
world executions and simulated executions. To further validate
the accuracy of our simulation results, we apply Kolmogorov-
Smirnov goodness of fit tests (KS tests) with null hypotheses
(H0) that the real-world and simulation samples are drawn from
the same distributions. The two-sample KS test results in a miss
if the null hypothesis (two-sided alternative hypothesis) is re-
jected at 5% significance level (p-value ≤ 0.05). Each test for
which the null hypothesis is not rejected (p-value > 0.05), indi-
cates that the simulated execution statistically matches the real-
world execution. Table 1 shows p-value and KS test distance
for both task submission times and task completion times. The
null hypothesis is not rejected, and we thus conclude that sim-
ulated workflow task executions statistically match real-world
executions well. These conclusions are confirmed by visually
comparing ECDFs. For instance, Figure 4 shows real-world
and simulated ECDFs for sample runs of Montage-2.0 on AWS-
m5.xlarge, with task submission, resp. completion, date ECDFs
on the left-hand, resp. right-hand, side. We observe that the
simulated ECDFs (“wrench”) track the real-world ECDFs (“pe-
gasus”) closely. We repeated these simulations using Work-
flowSim, and found that the null hypothesis is rejected for all
3 simulation scenarios. This is confirmed visually in Figure 4,
where the ECDFs obtained from the WorkflowSim simulation
(“workflowsim”) are far from the real-world ECDFs.

Although KS tests and ECDFs visual inspections validate
that the WRENCH-simulated ECDFs match the real-world
ECDFs statistically, these results do not distinguish between in-
dividual tasks. In fact, there are some discrepancies between

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Workflow Makespan (s)
F

(S
ub

m
itt

ed
 T

as
ks

)

A

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Workflow Makespan (s)

F
(C

om
pl

et
ed

 T
as

ks
)

B

pegasus wrench workflowsim

Figure 4: Empirical cumulative distribution function of task submit times (left)
and task completion times (right) for sample real-world (“pegasus”) and sim-
ulated (“wrench” and “workflowsim”) executions of Montage-2.0 on AWS-
m5.xlarge.

real-world and simulated schedules. For instance, Figure 5
shows Gantt charts corresponding to the workflow executions
shown in Figure 4, with the real-world execution on the left-
hand side (“pegasus”) and the simulated execution on the right-
hand side (“wrench”). Tasks executions are shown on the ver-
tical axis, each shown as a line segment along the horizontal
time axis, spanning the time between the task’s start time and
the task’s finish time. Different task types, i.e., different ex-
ecutables, are shown with different colors. In this workflow,
all tasks of the same type are independent and have the same
priority. We see that the shapes of the yellow regions, for ex-
ample, vary between the two executions. These variations are
explained by implementation-dependent behaviors of the work-
flow scheduler. In many instances throughout workflow execu-
tion several ready tasks can be selected for execution, e.g., sets
of independent tasks in the same level of the workflow. When
the number of available compute resources, n, is smaller than
the number of ready tasks, the scheduler picks n ready tasks for
immediate execution. In most WMSs, these tasks are picked
as whatever first n tasks are returned when iterating over data
structures in which task objects are stored. Building a perfectly
faithful simulation of a WMS would thus entail implement-
ing/using the exact same data structures as that in the actual
implementation. This could be labor intensive or perhaps not
even possible depending on which data structures, languages,
and/or libraries are used in that implementation. In the context
of this Pegasus case study, the production implementation of
the DAGMan scheduler uses a custom priority list implemen-
tation to store ready tasks, while our simulation version of it

9

0 1000 2000 3000

Makespan (s)

Ta
sk

s

pegasusA

0 1000 2000 3000

Makespan (s)

Ta
sk

s

wrenchB

Figure 5: Task execution Gantt chart for sample real-world (“pegasus”) and
simulated (“wrench”) executions of the Montage-2.0 workflow on the AWS-
m5.xlarge platform.

0.00

0.25

0.50

0.75

1.00

0 2000 4000

Workflow Makespan (s)

F
(S

ub
m

itt
ed

 T
as

ks
)

A

0.00

0.25

0.50

0.75

1.00

0 2000 4000

Workflow Makespan (s)

F
(C

om
pl

et
ed

 T
as

ks
)

B

workqueue wrench

Figure 6: Empirical cumulative distribution function of task submit times (left)
and task completion times (right) for sample real-world (“workqueue”) and
simulated (“wrench”) executions of SAND on Chameleon Cloud.

stores workflow tasks in a C++ std::map data structure in-
dexed by task string IDs. Consequently, when the real-world
scheduler picks the first n ready tasks it typically picks different
tasks than those picked by its simulated implementation. This
is the cause the discrepancies seen in Figure 5.

4.5. WorkQueue: Simulation Accuracy
Similar to results obtained with our Pegasus simulator, we

observe small (below 4%) average relative differences between
actual and simulated makespans using WorkQueue for execut-
ing the SAND workflow on the Chameleon cloud platform (4th
experimental scenario in Table 1). The two-sample KS tests
for both task submissions and completions indicate that sim-
ulated workflow task executions statistically match real-world
executions with the WorkQueue application execution frame-
work. Figure 6 shows real-world (“workqueue”) and simulated
(“wrench”) ECDFs of task submission, resp. completion, dates
on the left-hand, resp. right-hand, side. The real-world and
simulated task completion ECDFs closely match. However, for
task submission dates, although the real-world and simulated
ECDFs show very similar trends, the former exhibits a step
function pattern while the latter does not. After investigating

0 2000 4000

Makespan (s)

Ta
sk

s

workqueueA

0 2000 4000

Makespan (s)

Ta
sk

s

wrenchB

Figure 7: Task execution Gantt chart for sample real-world (“workqueue”) and
simulated (“wrench”) executions of the SAND framework on the Chameleon
Cloud platform.

this inconsistency, we found that in the real-world experiments
execution events are recorded in logs as jobs are generated, but
not when they are actually submitted to the HTCondor pool.
As a result, our ground truth is biased for task submission dates
as many tasks appear to be submitted at once. An additional
(small) source of discrepancy is that in the real-world execution
monitoring data from the HTCondor pool is pulled at regular
intervals (about 5s), while in our simulated execution there is
no such delay (this delay could be added by modifying our sim-
ulator’s implementation). We hypothesize that the simulated
execution may actually be closer to the real-world execution
than what is reported in the real-world execution logs (veri-
fying this hypothesis would require re-engineering the actual
WorkQueue implementation to improve its logging feature).
More generally, the above highlights the difficulties involved in
defining what constitutes a sensible ground truth and obtaining
this ground truth via real-world executions.

Figure 7 shows Gantt charts corresponding to the SAND ex-
ecutions shown in Figure 6. In the real-world execution, we
observe the same step function pattern seen in Figure 6, for the
same reasons. But we also note other discrepancies between
real-world and simulated executions. For instance, at the end of
the real-world execution, there is a gap in the Gantt chart. This
gap corresponds to tasks with sub-second durations, which are
not visible due to the chart’s resolution. In the real-world ex-
ecutions, all these tasks are submitted in sequence, hence the
gap. By contrast, in the simulated execution these tasks are
not submitted in sequence. The reason is exactly the same
phenomenon as that observed for Pegasus in the previous sec-
tion. During workflow execution there are often more ready
tasks than available workers, and WorkQueue must pick some
of these tasks for submissions. This is done by removing the
desired number of tasks from some data structure, and, here
again the real-world WorkQueue implementation and our sim-
ulation of it use different such data structures: the former uses
a std::vector, while the latter uses a std::map.

Overall, the result in this and in the previous sections show
that WRENCH makes it possible to accurately simulate the ex-

10

ecution of scientific workflows on production platforms. This
was demonstrated for two qualitatively different systems: the
Pegasus WMS (which uses a push model to perform early-
binding of tasks to compute resources) and the WorkQueue ap-
plication execution framework (which uses a pull model to per-
form late-binding of tasks to compute resources).

4.6. Simulation Scalability
In this section, we evaluate the speed and the memory foot-

print of WRENCH simulations. Results with WRENCH ver-
sion 1.2 were presented in the preliminary version of this
work [48], while results presented in this section are ob-
tained with version 1.4. Between these two versions a num-
ber of performance improvements were made, which explains
why the results presented here are superior. About 30% of
the performance gain is due to using more appropriate data
structures (e.g., whenever possible replacing C++ std::map

and std::set data structures by std::unordered map and
std::unordered set since the latter have O(1) average case
operations). About 50% of the gain is due to the removal of
a data structure to keep track of all in-flight (simulated) net-
work messages, so as to avoid memory leaks when simulat-
ing host failures. This feature is now only activated whenever
simulation of host failures is done. The remaining 20% is due
to miscellaneous code improvements (e.g., avoiding pass-by-
value parameters, using helper data structures to trade off space
for time).

Table 2 shows average simulated makespans and simulation
execution times for our 4 experimental scenarios. Simulations
are executed on a single core of a MacBook Pro 3.5 GHz In-
tel Core i7 with 16GiB of RAM. For these scenarios, simula-
tion times are more than 100x and up to 2500x shorter than
real-world workflow executions. This is because SimGrid sim-
ulates computation and communication operations as delays
computed based on computation and communication volumes
using simulation models with low computational complexity.

To further evaluate the scalability of our simulator, we use a
workflow generator [65] to generate representative randomized
configurations of the Montage workflow with from 1, 000 up
to 10, 000 tasks. We generate 5 workflow instances for each
number of tasks, and simulate the execution of these gener-
ated workflow instances on 128 cores (AWS-m5.xlarge with 32
4-core nodes) using our WRENCH-based Pegasus simulator.
Figure 8 shows simulation time (left vertical axis) and maxi-
mum resident set size (right vertical axis) vs. the number of
tasks in the workflow. Each sample point is the average over
the 5 workflow instances (error bars are shown as well). As
expected, both simulation time and memory footprint increase
as workflows become larger. The memory footprint grows lin-
early with the number of tasks (simply due to the need to store
more task objects). The simulation time grows faster initially,
but then linearly beyond 7,000 tasks. We conclude that the sim-
ulation scales well, making it possible to simulate very large
10,000-task Montage configurations in under 13 minutes on a
standard laptop computer.

Figure 8 also includes results obtained with WorkflowSim.
We find that WorkflowSim has a larger memory footprint than

Experimental Scenario Avg. Workflow Avg. Simulation
Workflow System Platform Makespan (s) Time (s)

1000Genome Pegasus ExoGENI 761.0 ±7.93 0.3 ±0.01
Montage-1.5 Pegasus AWS-t2.xlarge 1,784.0 ±137.67 8.3 ±0.09
Montage-2.0 Pegasus AWS-m5.xlarge 2,911.8 ±48.80 28.1 ±0.52

SAND WorkQueue Chameleon 5,339.2 ±133.56 16.3 ±0.86

Table 2: Simulated workflow makespans and simulation times averaged over 5
runs of each of our 4 experimental scenarios.

0

500

1000

0

500

1000

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

workflow tasks

T
im

e
(s

)

M
em

ory [M
B

]

memory usage

simulation time

workflowsim

wrench

Figure 8: Average simulation time (in seconds. left vertical axis) and memory
usage (maximum resident set size, right vertical axis) in MiB vs. workflow size.

our WRENCH-based simulator (by a factor ∼1.41 for 10,000-
task workflows), and it is slower than our WRENCH-based
simulator (by a factor ∼1.76 for 10,000-task workflows). In
our previous work [48], WorkflowSim was faster than our
WRENCH-based simulator (by a factor ∼1.81 for 10,000-task
workflows), with roughly similar trends. The reason for this im-
provement is a set of memory management optimizations that
were applied to the WRENCH implementation, and in particu-
lar for handling message objects exchanged between processes.
These optimizations have significantly improved the scalability
of WRENCH, and it is likely for several other optimizations are
possible to push scalability further. These optimizations have
also decreased the workflow simulation time significantly when
compared to the earlier WRENCH release, e.g., by a factor ∼2.6
for 10,000-task workflows.

Overall, our experimental results show that WRENCH not
only yields accurate simulation results but also can scalably
simulate the execution of large-scale complex scientific appli-
cations running on heterogeneous platforms.

5. Conclusion

In this paper, we have presented WRENCH, a simulation
framework for building simulators of Workflow Management
Systems. WRENCH implements high-level simulation abstrac-
tions on top of the SimGrid simulation framework, so as to
make it possible to build simulators that are accurate, that can
run scalably on a single computer, and that can be implemented
with minimal software development effort. Via case studies
for the Pegasus production WMS and WorkQueue application
execution framework, we have demonstrated that WRENCH
achieves these objectives, and that it favorably compares to a

11

recently proposed workflow simulator. The main finding is that
with WRENCH one can implement an accurate and scalable
simulator of a complex real-world system with a few hundred
lines of code. WRENCH is open source and welcomes contrib-
utors. WRENCH is already being used for several research and
education projects, and Version 1.5 was released in February
2020. We refer the reader to https://wrench-project.org

for software, documentation, and links to related projects.
A short-term development direction is to use WRENCH

to simulate the execution of current production WMSs and
application execution frameworks (as was done for Pegasus
and WorkQueue in Section 4). Although we have designed
WRENCH with knowledge of many such systems in mind, we
expect that WRENCH APIs and abstractions will evolve once
we set out to realize these implementations. Another develop-
ment direction is the implementation of more CI service ab-
stractions in WRENCH, e.g., a Hadoop Compute Service, spe-
cific distributed cloud Storage Services. From a research per-
spective, a future direction is that of automated simulation cal-
ibration. As seen in our Pegasus and WorkQueue case studies,
even when using validated simulation models, the values of a
number of simulation parameters must be carefully chosen in
order to obtain accurate simulation results. This issue is not
confined to WRENCH, but is faced by all distributed system
simulators. In our case studies, we have calibrated these pa-
rameters manually by analyzing and comparing simulated and
real-world execution event traces. While, to the best of our
knowledge, this is the typical practice, what is truly needed is
an automated calibration method. Ideally, this method would
process a (small) number of (not too large) real-world execu-
tion traces for “training scenarios”, and compute a valid and ro-
bust set of calibration parameter values. An important research
question will then be to understand to which extent these auto-
matically computed calibrations can be composed and extrapo-
lated to scenarios beyond the training scenarios.

Acknowledgments

This work is funded by NSF contracts #1642369 and
#1642335, “SI2-SSE: WRENCH: A Simulation Workbench for
Scientific Worflow Users, Developers, and Researchers”; by
CNRS under grant #PICS07239; and partly funded by NSF
contracts #1923539 and #1923621: “CyberTraining: Imple-
mentation: Small: Integrating core CI literacy and skills into
university curricula via simulation-driven activities”. We thank
Martin Quinson, Arnaud Legrand, and Pierre-François Dutot
for their valuable help. We also thank the NSF Chameleon
Cloud for providing time grants to access their resources.

References
[1] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields, Workflows for e-

Science: scientific workflows for grids, Springer Publishing Company,
Incorporated, 2007. doi:10.1007/978-1-84628-757-2.

[2] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, K. Wenger, Pegasus:
a Workflow Management System for Science Automation, Future Gener-
ation Computer Systems 46 (2015) 17–35. doi:10.1016/j.future.

2014.10.008.

[3] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong, et al., Askalon: A de-
velopment and grid computing environment for scientific workflows, in:
Workflows for e-Science, Springer, 2007, pp. 450–471. doi:10.1007/

978-1-84628-757-2_27.
[4] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, I. Foster,

Swift: A language for distributed parallel scripting, Parallel Computing
37 (9) (2011) 633–652. doi:10.1016/j.parco.2011.05.005.

[5] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al., The
taverna workflow suite: designing and executing workflows of web ser-
vices on the desktop, web or in the cloud, Nucleic acids research (2013)
gkt328doi:10.1093/nar/gkt328.

[6] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, S. Mock, Ke-
pler: an extensible system for design and execution of scientific work-
flows, in: Scientific and Statistical Database Management, 2004. Pro-
ceedings. 16th International Conference on, IEEE, 2004, pp. 423–424.
doi:10.1109/SSDM.2004.1311241.

[7] M. Albrecht, P. Donnelly, P. Bui, D. Thain, Makeflow: A portable ab-
straction for data intensive computing on clusters, clouds, and grids, in:
1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines
and Technologies, ACM, 2012, p. 1. doi:10.1145/2443416.2443417.

[8] N. Vydyanathan, U. V. Catalyurek, T. M. Kurc, P. Sadayappan, J. H. Saltz,
Toward optimizing latency under throughput constraints for application
workflows on clusters, in: Euro-Par 2007 Parallel Processing, Springer,
2007, pp. 173–183. doi:10.1007/978-3-540-74466-5_20.

[9] A. Benoit, V. Rehn-Sonigo, Y. Robert, Optimizing latency and reliability
of pipeline workflow applications, in: Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, IEEE, 2008, pp.
1–10. doi:10.1109/IPDPS.2008.4536160.

[10] Y. Gu, Q. Wu, Maximizing workflow throughput for streaming appli-
cations in distributed environments, in: Computer Communications and
Networks (ICCCN), 2010 Proceedings of 19th International Conference
on, IEEE, 2010, pp. 1–6. doi:10.1109/ICCCN.2010.5560146.

[11] M. Malawski, G. Juve, W. Deelman, J. Nabrzyski, Algorithms for cost-
and deadline-constrained provisioning for scientific workflow ensembles
in IaaS clouds, Future Generation Computer Systems 48 (2015) 1–18.
doi:10.1016/j.future.2015.01.004.

[12] J. Chen, Y. Yang, Temporal dependency-based checkpoint selection for
dynamic verification of temporal constraints in scientific workflow sys-
tems, ACM Transactions on Software Engineering and Methodology
(TOSEM) 20 (3) (2011) 9. doi:10.1145/2000791.2000793.

[13] G. Kandaswamy, A. Mandal, D. Reed, et al., Fault tolerance and recovery
of scientific workflows on computational grids, in: Cluster Computing
and the Grid, 2008. CCGRID’08. 8th IEEE International Symposium on,
IEEE, 2008, pp. 777–782. doi:10.1109/CCGRID.2008.79.

[14] R. Ferreira da Silva, T. Glatard, F. Desprez, Self-healing of workflow
activity incidents on distributed computing infrastructures, Future Gen-
eration Computer Systems 29 (8) (2013) 2284–2294. doi:10.1016/j.
future.2013.06.012.

[15] W. Chen, R. Ferreira da Silva, E. Deelman, T. Fahringer, Dynamic
and fault-tolerant clustering for scientific workflows, IEEE Transactions
on Cloud Computing 4 (1) (2016) 49–62. doi:10.1109/TCC.2015.

2427200.
[16] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, T. Fahringer, A multi-

objective approach for workflow scheduling in heterogeneous environ-
ments, in: Proceedings of the 2012 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (ccgrid 2012), IEEE Com-
puter Society, 2012, pp. 300–309. doi:10.1109/CCGrid.2012.114.

[17] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, R. Sakellar-
iou, Energy-constrained provisioning for scientific workflow ensembles,
in: Cloud and Green Computing (CGC), 2013 Third International Con-
ference on, IEEE, 2013, pp. 34–41. doi:10.1109/CGC.2013.14.

[18] M. Tikir, M. Laurenzano, L. Carrington, A. Snavely, PSINS: An Open
Source Event Tracer and Execution Simulator for MPI Applications,
in: Proc. of the 15th Intl. Euro-Par Conf. on Parallel Processing,
no. 5704 in LNCS, Springer, 2009, pp. 135–148. doi:10.1007/

978-3-642-03869-3_16.
[19] T. Hoefler, T. Schneider, A. Lumsdaine, LogGOPSim - Simulating Large-

Scale Applications in the LogGOPS Model, in: Proc. of the ACM Work-
shop on Large-Scale System and Application Performance, 2010, pp.

12

https://wrench-project.org
http://dx.doi.org/10.1007/978-1-84628-757-2
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1007/978-1-84628-757-2_27
http://dx.doi.org/10.1007/978-1-84628-757-2_27
http://dx.doi.org/10.1016/j.parco.2011.05.005
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1109/SSDM.2004.1311241
http://dx.doi.org/10.1145/2443416.2443417
http://dx.doi.org/10.1007/978-3-540-74466-5_20
http://dx.doi.org/10.1109/IPDPS.2008.4536160
http://dx.doi.org/10.1109/ICCCN.2010.5560146
http://dx.doi.org/10.1016/j.future.2015.01.004
http://dx.doi.org/10.1145/2000791.2000793
http://dx.doi.org/10.1109/CCGRID.2008.79
http://dx.doi.org/10.1016/j.future.2013.06.012
http://dx.doi.org/10.1016/j.future.2013.06.012
http://dx.doi.org/10.1109/TCC.2015.2427200
http://dx.doi.org/10.1109/TCC.2015.2427200
http://dx.doi.org/10.1109/CCGrid.2012.114
http://dx.doi.org/10.1109/CGC.2013.14
http://dx.doi.org/10.1007/978-3-642-03869-3_16
http://dx.doi.org/10.1007/978-3-642-03869-3_16

597–604. doi:10.1145/1851476.1851564.
[20] G. Zheng, G. Kakulapati, L. Kalé, BigSim: A Parallel Simulator for Per-

formance Prediction of Extremely Large Parallel Machines, in: Proc. of
the 18th Intl. Parallel and Distributed Processing Symposium (IPDPS),
2004. doi:10.1109/IPDPS.2004.1303013.

[21] R. Bagrodia, E. Deelman, T. Phan, Parallel Simulation of Large-
Scale Parallel Applications, International Journal of High Perfor-
mance Computing Applications 15 (1) (2001) 3–12. doi:10.1177/

109434200101500101.
[22] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger,

F. Zini, OptorSim - A Grid Simulator for Studying Dynamic Data
Replication Strategies, International Journal of High Performance
Computing Applications 17 (4) (2003) 403–416. doi:10.1177/

10943420030174005.
[23] R. Buyya, M. Murshed, GridSim: A Toolkit for the Modeling and Simula-

tion of Distributed Resource Management and Scheduling for Grid Com-
puting, Concurrency and Computation: Practice and Experience 14 (13-
15) (2003) 1175–1220. doi:10.1002/cpe.710.

[24] S. Ostermann, R. Prodan, T. Fahringer, Dynamic Cloud Provisioning for
Scientific Grid Workflows, in: Proc. of the 11th ACM/IEEE Intl. Conf. on
Grid Computing (Grid), 2010, pp. 97–104. doi:10.1109/GRID.2010.
5697953.

[25] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya,
CloudSim: A Toolkit for Modeling and Simulation of Cloud Comput-
ing Environments and Evaluation of Resource Provisioning Algorithms,
Software: Practice and Experience 41 (1) (2011) 23–50. doi:10.1002/
spe.995.

[26] A. Nez, J. Vzquez-Poletti, A. Caminero, J. Carretero, I. M. Llorente, De-
sign of a New Cloud Computing Simulation Platform, in: Proc. of the
11th Intl. Conf. on Computational Science and its Applications, 2011, pp.
582–593. doi:10.1007/978-3-642-21931-3_45.

[27] G. Kecskemeti, DISSECT-CF: A simulator to foster energy-aware
scheduling in infrastructure clouds, Simulation Modelling Practice and
Theory 58 (2) (2015) 188–218. doi:10.1016/j.simpat.2015.05.

009.
[28] A. Montresor, M. Jelasity, PeerSim: A Scalable P2P Simulator, in: Proc.

of the 9th Intl. Conf. on Peer-to-Peer, 2009, pp. 99–100. doi:10.1109/
P2P.2009.5284506.

[29] I. Baumgart, B. Heep, S. Krause, OverSim: A Flexible Overlay Network
Simulation Framework, in: Proc. of the 10th IEEE Global Internet Sym-
posium, IEEE, 2007, pp. 79–84. doi:10.1109/GI.2007.4301435.

[30] M. Taufer, A. Kerstens, T. Estrada, D. Flores, P. J. Teller, SimBA: A Dis-
crete Event Simulator for Performance Prediction of Volunteer Comput-
ing Projects, in: Proc. of the 21st Intl. Workshop on Principles of Ad-
vanced and Distributed Simulation, 2007, pp. 189–197. doi:10.1109/
PADS.2007.27.

[31] T. Estrada, M. Taufer, K. Reed, D. P. Anderson, EmBOINC: An Emulator
for Performance Analysis of BOINC Projects, in: Proc. of the Workshop
on Large-Scale and Volatile Desktop Grids (PCGrid), 2009. doi:10.

1109/IPDPS.2009.5161135.
[32] D. Kondo, SimBOINC: A Simulator for Desktop Grids and Volunteer

Computing Systems, Available at http://simboinc.gforge.inria.
fr/ (2007).

[33] H. Casanova, A. Giersch, A. Legrand, M. Quinson, F. Suter, Versatile,
Scalable, and Accurate Simulation of Distributed Applications and Plat-
forms, Journal of Parallel and Distributed Computing 74 (10) (2014)
2899–2917. doi:10.1016/j.jpdc.2014.06.008.

[34] C. D. Carothers, D. Bauer, S. Pearce, ROSS: A High-Performance,
Low Memory, Modular Time Warp System, in: Proc. of the 14th
ACM/IEEE/SCS Workshop of Parallel on Distributed Simulation, 2000,
pp. 53–60. doi:10.1109/PADS.2000.847144.

[35] W. Chen, E. Deelman, WorkflowSim: A Toolkit for Simulating Scientific
Workflows in Distributed Environments, in: Proc. of the 8th IEEE Intl.
Conf. on E-Science, 2012, pp. 1–8. doi:10.1109/eScience.2012.

6404430.
[36] A. Hirales-Carbajal, A. Tchernykh, T. Rblitz, R. Yahyapour, A Grid

simulation framework to study advance scheduling strategies for com-
plex workflow applications, in: In Proc. of IEEE Intl. Symp. on Paral-
lel Distributed Processing Workshops (IPDPSW), 2010. doi:10.1109/
IPDPSW.2010.5470918.

[37] M.-H. Tsai, K.-C. Lai, H.-Y. Chang, K. Fu Chen, K.-C. Huang, Pewss: A

platform of extensible workflow simulation service for workflow schedul-
ing research, Software: Practice and Experience 48 (4) (2017) 796–819.
doi:10.1002/spe.2555.

[38] S. Ostermann, K. Plankensteiner, D. Bodner, G. Kraler, R. Prodan, Inte-
gration of an Event-Based Simulation Framework into a Scientific Work-
flow Execution Environment for Grids and Clouds, in: In proc. of the
4th ServiceWave European Conference, 2011, pp. 1–13. doi:10.1007/
978-3-642-24755-2_1.

[39] G. Kecskemeti, S. Ostermann, R. Prodan, Fostering Energy-Awareness in
Simulations Behind Scientific Workflow Management Systems, in: Proc.
of the 7th IEEE/ACM Intl. Conf. on Utility and Cloud Computing, 2014,
pp. 29–38. doi:10.1109/UCC.2014.11.

[40] J. Cao, S. Jarvis, S. Saini, G. Nudd, GridFlow: Workflow Management for
Grid Computing, in: Proc. of the 3rd IEEE/ACM Intl. Symp. on Cluster
Computing and the Grid (CCGrid), 2003, pp. 198–205.

[41] The SimGrid Project, Available at http://simgrid.org/ (2019).
[42] P. Bedaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis,

M. Quinson, M. Stillwell, F. Suter, B. Videau, Toward Better Simula-
tion of MPI Applications on Ethernet/TCP Networks, in: Prod. of the
4th Intl. Workshop on Performance Modeling, Benchmarking and Sim-
ulation of High Performance Computer Systems, 2013. doi:10.1007/

978-3-319-10214-6_8.
[43] P. Velho, L. Mello Schnorr, H. Casanova, A. Legrand, On the Validity of

Flow-level TCP Network Models for Grid and Cloud Simulations, ACM
Transactions on Modeling and Computer Simulation 23 (4). doi:10.

1145/2517448.
[44] P. Velho, A. Legrand, Accuracy Study and Improvement of Network

Simulation in the SimGrid Framework, in: Proc. of the 2nd Intl. Conf.
on Simulation Tools and Techniques, 2009. doi:10.4108/ICST.

SIMUTOOLS2009.5592.
[45] K. Fujiwara, H. Casanova, Speed and Accuracy of Network Simulation in

the SimGrid Framework, in: Proc. of the 1st Intl. Workshop on Network
Simulation Tools, 2007.

[46] A. Lèbre, A. Legrand, F. Suter, P. Veyre, Adding Storage Simulation Ca-
pacities to the SimGrid Toolkit: Concepts, Models, and API, in: Proc.
of the 8th IEEE Intl. Symp. on Cluster Computing and the Grid, 2015.
doi:10.1109/CCGrid.2015.134.

[47] The WRENCH Project, https://wrench-project.org (2020).
[48] H. Casanova, S. Pandey, J. Oeth, R. Tanaka, F. Suter, R. Ferreira da Silva,

WRENCH: A Framework for Simulating Workflow Management Sys-
tems, in: 13th Workshop on Workflows in Support of Large-Scale Science
(WORKS’18), 2018, pp. 74–85. doi:10.1109/WORKS.2018.00013.

[49] L. Yu, C. Moretti, A. Thrasher, S. Emrich, K. Judd, D. Thain, Har-
nessing parallelism in multicore clusters with the all-pairs, wavefront,
and makeflow abstractions, Cluster Computing 13 (3) (2010) 243–256.
doi:10.1007/s10586-010-0134-7.

[50] The ns-3 Network Simulator, Available at http://www.nsnam.org.
[51] E. León, R. Riesen, A. Maccabe, P. Bridges, Instruction-Level Simulation

of a Cluster at Scale, in: Proc. of the Intl. Conf. for High Performance
Computing and Communications (SC), 2009. doi:10.1145/1654059.
1654063.

[52] R. Fujimoto, Parallel Discrete Event Simulation, Commun. ACM 33 (10)
(1990) 30–53. doi:10.1145/84537.84545.

[53] V. Cima, J. Bernek, S. Bhm, ESTEE: A Simulation Toolkit for Distributed
Workflow Execution, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC),
2019, research Poster.

[54] S. Ostermann, G. Kecskemeti, R. Prodan, Multi-layered Simulations at
the Heart of Workflow Enactment on Clouds, Concurrency and Computa-
tion Practice and Experience 28 (2016) 3180–3201. doi:10.1002/cpe.
3733.

[55] R. Matha, S. Ristov, R. Prodan, Simulation of a workflow execution as
a real Cloud by adding noise, Simulation Modelling Practice and Theory
79 (2017) 37–53. doi:10.1016/j.simpat.2017.09.003.

[56] L. Bobelin, A. Legrand, D. A. G. Márquez, P. Navarro, M. Quinson,
F. Suter, C. Thiery, Scalable Multi-Purpose Network Representation for
Large Scale Distributed System Simulation, in: Proceedings of the 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid), Ottawa, Canada, 2012, pp. 220–227. doi:10.1109/

CCGrid.2012.31.
[57] M. Turilli, M. Santcroos, S. Jha, A Comprehensive Perspective on Pilot-

13

http://dx.doi.org/10.1145/1851476.1851564
http://dx.doi.org/10.1109/IPDPS.2004.1303013
http://dx.doi.org/10.1177/109434200101500101
http://dx.doi.org/10.1177/109434200101500101
http://dx.doi.org/10.1177/10943420030174005
http://dx.doi.org/10.1177/10943420030174005
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1109/GRID.2010.5697953
http://dx.doi.org/10.1109/GRID.2010.5697953
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1007/978-3-642-21931-3_45
http://dx.doi.org/10.1016/j.simpat.2015.05.009
http://dx.doi.org/10.1016/j.simpat.2015.05.009
http://dx.doi.org/10.1109/P2P.2009.5284506
http://dx.doi.org/10.1109/P2P.2009.5284506
http://dx.doi.org/10.1109/GI.2007.4301435
http://dx.doi.org/10.1109/PADS.2007.27
http://dx.doi.org/10.1109/PADS.2007.27
http://dx.doi.org/10.1109/IPDPS.2009.5161135
http://dx.doi.org/10.1109/IPDPS.2009.5161135
http://simboinc.gforge.inria.fr/
http://simboinc.gforge.inria.fr/
http://dx.doi.org/10.1016/j.jpdc.2014.06.008
http://dx.doi.org/10.1109/PADS.2000.847144
http://dx.doi.org/10.1109/eScience.2012.6404430
http://dx.doi.org/10.1109/eScience.2012.6404430
http://dx.doi.org/10.1109/IPDPSW.2010.5470918
http://dx.doi.org/10.1109/IPDPSW.2010.5470918
http://dx.doi.org/10.1002/spe.2555
http://dx.doi.org/10.1007/978-3-642-24755-2_1
http://dx.doi.org/10.1007/978-3-642-24755-2_1
http://dx.doi.org/10.1109/UCC.2014.11
http://simgrid.org/
http://dx.doi.org/10.1007/978-3-319-10214-6_8
http://dx.doi.org/10.1007/978-3-319-10214-6_8
http://dx.doi.org/10.1145/2517448
http://dx.doi.org/10.1145/2517448
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5592
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5592
http://dx.doi.org/10.1109/CCGrid.2015.134
https://wrench-project.org
http://dx.doi.org/10.1109/WORKS.2018.00013
http://dx.doi.org/10.1007/s10586-010-0134-7
http://www.nsnam.org
http://dx.doi.org/10.1145/1654059.1654063
http://dx.doi.org/10.1145/1654059.1654063
http://dx.doi.org/10.1145/84537.84545
http://dx.doi.org/10.1002/cpe.3733
http://dx.doi.org/10.1002/cpe.3733
http://dx.doi.org/10.1016/j.simpat.2017.09.003
http://dx.doi.org/10.1109/CCGrid.2012.31
http://dx.doi.org/10.1109/CCGrid.2012.31

Job Systems, ACM Comput. Surv. 51 (2) (2018) 43:1–43:32. doi:10.

1145/3177851.
[58] J. Frey, Condor dagman: Handling inter-job dependencies, Tech. rep.

(2002).
URL http://www.bo.infn.it/calcolo/condor/dagman/

[59] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice:
the condor experience, Concurrency and computation: practice and expe-
rience 17 (2-4) (2005) 323–356. doi:10.1002/cpe.938.

[60] B. Tovar, R. Ferreira da Silva, G. Juve, E. Deelman, W. Allcock, D. Thain,
M. Livny, A job sizing strategy for high-throughput scientific workflows,
IEEE Transactions on Parallel and Distributed Systems 29 (2) (2018)
240–253. doi:10.1109/TPDS.2017.2762310.

[61] The WRENCH Pegasus Simulator, https://github.com/

wrench-project/pegasus (2019).
[62] The WRENCH WorkQueue Simulator, https://github.com/

wrench-project/workqueue (2019).
[63] R. Ferreira da Silva, R. Filgueira, E. Deelman, E. Pairo-Castineira, I. M.

Overton, M. Atkinson, Using simple PID-inspired controllers for online
resilient resource management of distributed scientific workflows, Future
Generation Computer Systems 95 (2019) 615–628. doi:10.1016/j.

future.2019.01.015.
[64] C. Moretti, A. Thrasher, L. Yu, M. Olson, S. Emrich, D. Thain, A frame-

work for scalable genome assembly on clusters, clouds, and grids, IEEE
Transactions on Parallel and Distributed Systems 23 (12) (2012) 2189–
2197. doi:10.1109/TPDS.2012.80.

[65] R. Ferreira da Silva, W. Chen, G. Juve, K. Vahi, E. Deelman, Community
resources for enabling and evaluating research on scientific workflows,
in: 10th IEEE International Conference on e-Science, eScience’14, 2014,
pp. 177–184. doi:10.1109/eScience.2014.44.

[66] Pegasus’ DAX Workflow Description Format, https://pegasus.isi.
edu/documentation/creating_workflows.php (2019).

[67] The Standard Workload Format, http://www.cs.huji.ac.il/labs/
parallel/workload/swf.html (2019).

[68] D. Lifka, The ANL/IBM SP Scheduling System, in: Proc. of the 1st
Workshop on Job Scheduling Strategies for Parallel Processing, LCNS,
Vol. 949, 1995, pp. 295–303. doi:10.1007/3-540-60153-8_35.

[69] F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi: A Decentralized
Network Coordinate System, in: Proc. of SIGCOMM, 2004. doi:

10.1145/1015467.1015471.

Appendix A. Example WRENCH Simulator

An example WRENCH simulator developed using the
WRENCH User API (see Section 3.5) is shown in Figure 9.
This simulator uses a WMS implementation (called SomeWMS)
that has already been developed using the WRENCH Devel-
oper API (see Section 3.4). After initializing the simulation
(lines 7-8), the simulator instantiates a platform (line 11) and a
workflow (line 14-15). A workflow is defined as a set of com-
putation tasks and data files, with control and data dependen-
cies between tasks. Each task can also have a priority, which
can then be taken into account by a WMS for scheduling pur-
poses. Although the workflow can be defined purely program-
matically, in this example the workflow is imported from a
workflow description file in the DAX format [66]. At line 18
the simulator creates a storage service with 1PiB capacity ac-
cessible on host storage host. This and other hostnames are
specified in the XML platform description file. At line 22 the
simulator creates a compute service that corresponds to a 4-
node batch-scheduled cluster. The physical characteristics of
the compute nodes (node[1-4]) are specified in the platform
description file. This compute service has a 1TiB scratch stor-
age space. Its behavior is customized by passing a couple of
property-value pairs to its constructor. It will be subject to a

background load as defined by a trace in the standard SWF for-
mat [67], and its batch queue will be managed using the EASY
Backfilling scheduling algorithm [68]. The simulator then cre-
ates a second compute service (line 28), which is a 4-host cloud
service with 4TiB scratch space, customized so that it does not
support pilot jobs. Two helper services are instantiated, a data
registry service so that the WMS can keep track of file loca-
tions (line 33) and a network monitoring service that uses the
Vivaldi algorithm [69] to measure network distances between
the two hosts from which the compute services are accessed
(batch login and cloud gateway) and the my host host, which
is the host that runs these helper services and the WMS (line
36). At line 41, the simulator specifies that the workflow data
file input file is initially available at the storage service. It
then instantiates the WMS and passes to it all available services
(line 44), and assigns the workflow to it (line 47). The crucial
call is at line 50, where the simulation is launched and the sim-
ulator hands off control to WRENCH. When this call returns
the workflow has either completed or failed. Assuming it has
completed, the simulator then retrieves the ordered set of task
completion events (line 53) and performs some (in this exam-
ple, trivial) mining of these events (line 55).

For brevity, the example in Figure 9 omits try/catch clauses.
Also, note that although the simulator uses the new operator to
instantiate WRENCH objects, the simulation object takes own-
ership of these objects (using unique or shared pointers), so that
there is no memory deallocation onus placed on the user.

14

http://dx.doi.org/10.1145/3177851
http://dx.doi.org/10.1145/3177851
http://www.bo.infn.it/calcolo/condor/dagman/
http://www.bo.infn.it/calcolo/condor/dagman/
http://dx.doi.org/10.1002/cpe.938
http://dx.doi.org/10.1109/TPDS.2017.2762310
https://github.com/wrench-project/pegasus
https://github.com/wrench-project/pegasus
https://github.com/wrench-project/workqueue
https://github.com/wrench-project/workqueue
http://dx.doi.org/10.1016/j.future.2019.01.015
http://dx.doi.org/10.1016/j.future.2019.01.015
http://dx.doi.org/10.1109/TPDS.2012.80
http://dx.doi.org/10.1109/eScience.2014.44
https://pegasus.isi.edu/documentation/creating_workflows.php
https://pegasus.isi.edu/documentation/creating_workflows.php
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://dx.doi.org/10.1007/3-540-60153-8_35
http://dx.doi.org/10.1145/1015467.1015471
http://dx.doi.org/10.1145/1015467.1015471

1 #include <math.h>

2 #include <wrench.h>

3
4 int main(int argc, char **argv) {

5
6 // Declare and initialize a simulation
7 wrench::Simulation simulation;

8 simulation.init(&argc, argv);

9
10 // Instantiate a platform
11 simulation.instantiatePlatform("my_platform.xml");

12
13 // Instantiate a workflow
14 wrench::Workflow workflow;

15 workflow.loadFromDAX("my_workflow.dax", "1000Gf");

16
17 // Instantiate a storage service
18 auto storage_service = simulation.add(new wrench::SimpleStorageService("storage_host", pow(2,50)));

19
20 // Instantiate a sompute service (a batch−scheduled 4−node cluster that uses the
21 // EASY backfilling algorithm and is subject to a background load)
22 auto batch_service = simulation.add(

23 new wrench::BatchService("batch_login", {"node1", "node2", "node3", "node4"}, pow(2,40),

24 {{wrench::BatchServiceProperty::SIMULATED_WORKLOAD_TRACE_FILE, "load.swf"},

25 {wrench::BatchServiceProperty::BATCH_SCHEDULING_ALGORITHM, "easy_bf"}}));

26
27 // Instantiate a compute service (a 4−host cloud platform that does not support pilot jobs)
28 auto cloud_service = simulation.add(

29 new wrench::CloudService("cloud_gateway", {"host1", "host2", "host3", "host4"}, pow(2,42),

30 {{wrench::CloudServiceProperty::SUPPORTS_PILOT_JOBS, "false"}}));

31
32 // Instantiate a data registry service
33 auto data_registry_service = simulation.add(new wrench::FileRegistryService("my_desktop"));
34
35 // Instantiate a network monitoring service
36 auto network_monitoring_service = simulation.add(new wrench::NetworkProximityService(
37 "my_desktop", {"my_desktop", "batch_login", "cloud_gateway"},

38 {{wrench::NetworkProximityServiceProperty::NETWORK_PROXIMITY_SERVICE_TYPE, "vivaldi"}});

39
40 // Stage a workflow input file at the storage service
41 simulation.stageFile(workflow.getFileByID("input_file"), storage_service);

42
43 // Instantiate a WMS...
44 auto wms = simulation.add(new wrench::SomeWMS({batch_service, cloud_service}, {storage_service},

45 {network_monitoring_service}, {data_registry_service}, "my_desktop"));

46 // ... and assign the workflow to it, to be executed one hour in
47 wms->addWorkflow(&workflow, 3600);

48
49 // Launch the simulation
50 simulation.launch();

51
52 // Retrieve task completion events
53 auto trace = simulation.getOutput().getTrace<wrench::SimulationTimestampTaskCompletion>();

54 // Determine the completion time of the last task that completed
55 double completion_time = trace[trace.size()-1]->getContent()->getDate();

56 }

Figure 9: Example fully functional WRENCH simulator. Try-catch clauses are omitted.

15

	Introduction
	Related Work
	WRENCH
	Objective and Intended Users
	Software Architecture Overview
	Simulation Core
	WRENCH Developer API
	WRENCH User API
	Simulation Debugging and Visualization

	Case Study: Simulating production WMSs
	Implementing Pegasus with WRENCH
	Implementing WorkQueue with WRENCH
	Experimental Scenarios
	Pegasus: Simulation Accuracy
	WorkQueue: Simulation Accuracy
	Simulation Scalability

	Conclusion
	Example WRENCH Simulator

