
WorkflowSim: A Toolkit for Simulating Scientific Workflows in Distributed
Environments

Weiwei Chen
Information Sciences Institute

University of Southern California
Marina del Rey, CA, USA

E-mail: wchen@isi.edu

Ewa Deelman
Information Sciences Institute

University of Southern California
Marina del Rey, CA, USA
E-mail: deelman@isi.edu

Abstract—Simulation is one of the most popular evaluation
methods in scientific workflow studies. However, existing
workflow simulators fail to provide a framework that takes
into consideration heterogeneous system overheads and
failures. They also lack the support for widely used workflow
optimization techniques such as task clustering. In this paper,
we introduce WorkflowSim, which extends the existing
CloudSim simulator by providing a higher layer of workflow
management. We also indicate that to ignore system overheads
and failures in simulating scientific workflows could cause
significant inaccuracies in the predicted workflow runtime. To
further validate its value in promoting other research work, we
introduce two promising research areas for which
WorkflowSim provides a unique and effective evaluation
platform.

Keywords: workflow; clustering; overhead; failure;
simulation.

I. INTRODUCTION
Over the years, scientific workflows have emerged as a

paradigm for representing complex distributed scientific
computations. Scientific workflows can be composed of a
large number of tasks and the execution of these tasks may
require many complex modules and software. The evaluation
of the performance of workflow optimization techniques in
real infrastructures is complex and time consuming. As a
result, simulation-based studies have become a widely
accepted way to evaluate workflow systems. For example,
scheduling algorithms, such as HEFT [3], Min-Min [1],
Max-Min [2], etc., have used simulators to evaluate their
effectiveness. A simulation-based approach reduces the
complexity of the experimental setup and saves much effort
in workflow execution by enabling the testing of their
applications in a repeatable and controlled environment.

However, an accurate simulation framework for scientific
workflows is required to generate reasonable results,
particularly considering that the overall system overhead [4]
plays a significant role in the workflow’s runtime. In
heterogeneous distributed systems, workflows may
experience different types of overheads, which are defined as
the time of performing miscellaneous work other than
executing users’ computational activities. Since the causes
of overheads differ, the overheads have diverse distributions
and behaviors. For example, the time to run a post-script that

checks the return status of a computation is usually a
constant. However, queue delays incurred while tasks are
waiting in a batch scheduling systems can vary widely. By
classifying these workflow overheads in different layers and
system components, a simulator can offer a more accurate
result than simulators that do not include overheads in their
system models.

What’s more, many researchers [5][6][7][8][9][10] have
emphasized the importance of fault tolerant design and
concluded that the failure rates in modern distributed systems
should not be neglected. A simulation with support for
randomization and layered failures is required to promote
such studies.

Finally, progress in workflow research also requires a
general-purpose framework that can support widely accepted
features of workflows and optimization techniques. Existing
simulators such as CloudSim/GridSim[12] fail to provide
fine granularity simulations of workflows. For example, they
lack the support of task clustering, which is a popular
technique that merges small tasks into a large job to reduce
task execution overheads. The simulation of task clustering
requires two layers of execution model, on both task and job
levels. It also requires a workflow-clustering engine that
launches algorithms and heuristics to cluster tasks. Other
techniques such as workflow partitioning and task retry are
also ignored in these simulators.

 To the best of our knowledge, none of the current
distributed system simulators support these rich-features and
techniques. In this paper, we introduce our early work on
simulating scientific workflows satisfying these
requirements. We evaluate the performance of WorkflowSim
with an example of task clustering. We further show that
WorkflowSim is promising in providing an evaluation
platform for research areas such as fault tolerant clustering
and overhead robustness studies.

The contribution of this paper includes an introduction of
our WorkflowSim framework and how it distinguishes from
other simulators in Section III. We also validate the
performance of WorkflowSim with an example of task
clustering in Section IV. Finally, in Section V, we discuss
the promising usage of this simulation framework. The
conclusion and future directions are presented in Section VI.

II. RELATED WORK
Deelman et. al. [13] have provided a survey of popular

workflow systems for scientific applications and have
classified their components into four categories:
composition, mapping, execution, and provenance. Based on
this survey, we identified the mandatory
functionalities/components and designed the layers in our
WorkflowSim. In our design, we add multiple layers on top
of the existing workflow scheduling layer of CloudSim,
which include the Workflow Mapper, the Workflow Engine,
the Clustering Engine, the Failure Generator, the Failure
Monitor etc. We will explain the details of these layers in
Section III.

CloudSim [12] is a popular framework for modeling and
simulating cloud computing infrastructures and services.
However, it only supports the execution of single workloads
while our work focuses on workflow scheduling and
execution. It has a simple model of task execution that does
not consider task dependencies or clustering. It also ignores
the occurrence of failures and overheads. WorkflowSim
extends CloudSim to fulfill these new requirements. Other
simulators [14][15] were specifically designed for a few
desirable aspects of workflow management such as
workflow scheduling, but such simplification does not match
the ever-changing world of distributed computing and the
evolution of new workflow management techniques.
Therefore, rather than focusing on a specific aspect of
workflow management, WorkflowSim attempts to extract the
common features exposed by various workflow systems and
to support widely used workflow management techniques.
WorkflowSim supports not only the evaluation of scheduling
techniques but also considers diverse task
scheduling/execution overheads and failures.

Task clustering [16] is a technique that merges fined-
grained tasks into coarse-grained jobs. After task clustering
the number of jobs to be executed in a workflow is reduced
and the cumulative workflow execution overhead is reduced
as well. However, the paper’s clustering strategy is static and
does not consider dynamic resource characteristics. Also, it
does not consider the middleware overhead from diverse grid
middleware services, such as the time to query resources,
and the time to match jobs with resources, etc. These
overheads are included in our model and the values are
estimated based on real execution traces.

Failure analysis and modeling [6] present system
characteristics such as error and failure distribution and
hazard rates. Schroeder et al. [7] have studied the statistics of
the execution failure data, including the root cause of
failures, the mean time between failures, and the mean time
to repair. Sahoo et al. [8] analyzed the empirical and
statistical properties of system errors and failures from a
network of heterogeneous servers running a diverse
workload. Benoit et al. [11] analyzed the impact of transient
and fail-stop failures on the complexity of task graph
scheduling. Among all the failures, we focus on transient
failures because they are expected to be more prevalent than
permanent ones. Based on these works, we simulate failures
in two layers (task/job) and provide an interface for users to

develop fault tolerant algorithms. In section V we will
introduce our work in fault tolerant clustering.

III. MODELS AND FEATURES
As Figure 1 shows, there are multiple layers of

components involved in preparing and executing a
workflow. In this paper, the model of workflow management
systems (WMS) is similar to that of Pegasus WMS [17],
which contains: a Workflow Mapper to map abstract
workflows to concrete workflows that are dependent on
execution sites; a Workflow Engine to handle the data
dependencies; and a Workflow Scheduler to match jobs to
resources. Other components include a Clustering Engine
that merges small tasks into a large job, a Provenance
collector that tracks the history of task/job execution and a
Workflow Partitioner that divides the user workflow into
multiple sub-workflows. WorkflowSim has implemented
these functionalities as follows.

A. Components
1) Workflow Mapper

We model workflows as Directed Acyclic Graphs
(DAGs), where jobs represent users’ computation to be
executed and directed edges represent data or control flow
dependencies between the jobs. Figure 2 (Left) shows an
example of the Montage workflow with 9 horizontal levels
and 18 tasks together. Montage [20] is an astronomy
application used to construct large image mosaics of the sky.
All the tasks at a horizontal level of the Montage workflow
are invocations of the same routing operating on different
input data. For example, tasks at the first level are
invocations of mProjectPP, which reprojects an input image
to the scale defined by a template header file. The Workflow
Mapper is used to import DAG files formatted in XML and
other metadata information such as file size. After mapping,
the Workflow Mapper creates a list of tasks and assigns these
tasks to an execution site. A task is a program/activity that a
user would like to execute.

Figure 1 WorkflowSim Overview. The area surrounded by red lines is

supported by CloudSim.

2) Clustering Engine
We define a task as a program that a user would like to

execute. A job is an atomic unit seen by the execution
system, which contains multiple tasks to be executed in

sequence or in parallel. The Clustering Engine merges tasks
into jobs so as to reduce the scheduling overheads. Figure 2
(Right) shows an example workflow after horizontal
clustering, which merges tasks at the same horizontal levels
in the original workflow graph. There are other types of
clustering strategies, such as for example vertical clustering
that merge tasks at the same pipeline vertically.

3) Workflow Engine
The Workflow Engine manages jobs based on their

dependencies to assure that a job may only be released when
all of its parent jobs have completed successfully. The
Workflow Engine will only release free jobs to the
Scheduler. In the real execution we studied, we use
DAGMan [18] as the Workflow Engine.

Figure 2 Original Montage Workflow (Left) and the workflow after

horizontal clustering (Right).

4) Workflow Scheduler and Job Execution
The Workflow Scheduler is used to match jobs to worker

nodes based on the criteria selected by users (MaxMin [2],
MinMin [1], and many other heuristics). While CloudSim
has already supported static scheduling algorithms, we added
the support of dynamic workflow algorithms. For static
algorithms, jobs are assigned to a worker node at the
workflow planning stage. When the job reaches the remote
scheduler, it will just wait until the assigned worker node is
free. For dynamic algorithms, jobs are matched to a worker
node in the remote scheduler whenever a worker node
becomes idle. WorkflowSim relies on CloudSim to provide
an accurate and reliable job-level execution model, such as
time-shared model and space-shared model. However,
WorkflowSim has introduced different layers of overheads
and failures, which improves the accuracy of simulation.

Figure 3 Interaction between components.

To associate and coordinate these layers, we adopted an
event-based approach where each component maintains a
message queue. Figure 3 shows a simple configuration with
two execution sites, of which each has two nodes. Each
component maintains its own message queue and iteratively
checks whether it can process one message. For example, at
each iteration, the Clustering Engine checks whether it has
received new tasks from the Workflow Engine and whether
it should release new jobs to the Scheduler. When none of
these components have any more messages in queue, the
simulation is completed.

B. Layered Overhead
Based on our prior studies on workflow overheads, we

add layered overhead to the workflow simulation. We have
classified workflow overheads into five categories as
follows.

• Workflow Engine Delay measures the time between
when the last parent job of a job completes and the time
when the job gets submitted to the local queue. In case
of retries the value of the last retry is used for the
calculation. Since we use a DAG model to represent
workflows, the completion time of the last parent job
means this job is released to the ready queue and is
waiting for resources to be assigned to it. The workflow
engine delay reflects the efficiency of a workflow
engine (in our case DAGMan).

• Queue Delay is defined as the time between the
submission of a job by the workflow engine to the local
queue and the time the local scheduler sees the job
running (potentially on remote resources). This
overhead reflects the efficiency of the workflow
scheduler (e.g., Condor [19]) to execute a job and the
availability of resources for the execution of the job. In
case of retries the value is the cumulative of all the
retries.

• Postscript Delay and Prescript Delay is the time taken
to execute a lightweight script under some execution
systems before and after the execution of a job.
Prescripts are usually used to create directories for job
execution. Postscripts examine the exit code of a job
after the computational part of the job is done.

• Data Transfer Delay happens when data is transferred
between nodes. It includes three different types of
processes: staging data in, cleaning up, and staging data
out. Stage-in jobs transfer input files from source sites to
execution sites before the computation starts. Cleanup
jobs delete intermediate data that is no longer needed by
the remainder of the workflow. Stage-out jobs transfer
workflow output data to archiving sites for storage and
analysis.

• Clustering Delay measures the difference between the
sum of the actual task runtime and the job runtime seen
by the Workflow Scheduler. The cause of Clustering
Delay is usually the use a job wrapper used to execute a
clustered job. The wrapper takes some time to extract
the list of tasks and to launch them.

Figure 4 Workflow overhead and runtime. Clustering Delay and Data

Transfer Delay are not shown (included in Runtime).

Figure 5 Workflow Engine Delay of mProjectPP.

In our prior work [4], we have introduced the distribution
of overheads and the relationship between them. Following
this, we indicate the necessity to consider the distribution of
overheads rather than simply adding a constant delay after
job execution. We use Workflow Engine Delay as an
example to show the necessity to model overheads
appropriately. Figure 4 shows a real trace of overheads and
runtime in Montage 8 degree workflow (for scaling issues,
we only show the first 15 jobs in the mProjectPP level). We
can see that the Workflow Engine Delay increases steadily
after every five jobs. For example, the Workflow Engine
Delay of jobs with ID from 6 to 10 is approximately twice of
that of jobs ranging from ID1 to ID5. Figure 5 further shows
the distribution of Workflow Engine Delay of mProjectPP
level in Montage workflow that was run five times. After
every five jobs, the Workflow Engine Delay increases by 8
seconds approximately. We call this special feature of
workflow overhead as cyclic increase. The reason is that the
Workflow Engine (in this trace it is DAGMan) releases five
jobs by default in every working cycle. Therefore, simply
adding a constant delay after every job execution has ignored
its potential influence on the performance. For this reason we
adopt a message queue based approach and iteratively check
the message queues in WorkflowSim.

Figure 6 shows the average value of Clustering Delay of
mProjectPP, mDiffFit, and mBackground. It is clear that
with the increase of k (the maximum number of jobs per
horizontal level), there are less and less tasks in a clustered

job, and thus the Clustering Delay for each job decreases.
For simplicity, we use an inverse proportion model in Eq. (1)
to describe this trend of Clustering Delay with k. Intuitively
we assume that the average delay per task in a clustered job
is constant (n is the number of tasks in a horizontal level).
An inverse proportion model can estimate the delay when
k=i directly if we have known the delay when k=j. Therefore
we can predict all the clustering cases as long as we have
gathered one clustering case. This capability is required in
our validation in Section IV. Other complex models may
require multiple clustering cases to predict all other
clustering cases.

!"#$%&'()* !"#$%|!!!
!"#$%&'()* !"#$%|!!!

=
!
!

!
!
= !

!
 (1)

Figure 6 Clustering Delay of mProjectPP, mDiffFit, and mBackground

C. Layered Failures and Job Retry
Failures can occur at different times during the workflow

execution. Consistent with the definition of tasks and job, we
divide transient failures into two categories: task failure and
job failure. If the transient failure affects the computation of
a task (task failure), other tasks within the job do not
necessarily fail. If the transient failure affects the clustered
job (job failure), all of its tasks fail. We have added two
components in response to the simulation of failures:

• Failure Generator component is introduced to inject
task/job failures at each execution site. After the
execution of each job, Failure Generator randomly
generates task/job failures based on the distribution and
average failure rate that a user has specified.

• Failure Monitor collects failure records (e.g., resource
id, job id, task id) and returns them to the workflow
management system so that it can adjust the scheduling
strategies dynamically.

We also modified other components to support fault
tolerant optimization. In a failure-prone environment, there
are several options to improve workflow performance. First,
one can simply retry the entire job or only the failed part of
this job when its computation is not successful. This
functionality is added to the Workflow Scheduler, which
checks the status of a job and takes action based on the
strategies that a user selects. Furthermore, Reclustering is a
technique that we have proposed [1] that attempts to adjust
the task clustering strategy based on the detected failure rate.

This functionality is added to the Workflow Engine. Details
of this method are explained in Section V.A.

IV. VALIDATION
We use task clustering as an example to illustrate the

necessity of introducing overheads into workflow simulation.
The goal was to compare the simulated overall runtime of
workflows in case the information of job runtime and system
overheads are known and extracted from prior traces.

In this example, we collected real traces generated by the
Pegasus Workflow Management System while executing
workflows on FutureGrid [21]. We built an execution site
with 20 worker nodes and we executed the Montage
workflow five times in every single configuration of k,
which is the maximum number of clustered jobs in a
horizontal level. These five traces of workflow execution
with the same k is a training set or a validation set. Partly
illustrated by Figure 5, the results are stable enough to be
used as a training set. We ran the Montage workflow with a
size of 8-degree squares of sky. The workflow has 10,422
tasks and 57GB of overall data. We tried different k from 20
to 100, leaving us 5 groups of data sets with each group
having 5 workflow traces.

First of all, we adopt a simple approach that picks up a
training set to train WorkflowSim and then use the same
training set as validation set to compare the predicted overall
runtime and the real overall runtime in the traces. We define
accuracy in this section as the ratio between the predicted
overall runtime and the real overall runtime:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑢𝑛𝑡𝑖𝑚𝑒
𝑅𝑒𝑎𝑙 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 (2)

Figure 7 Performance of WorkflowSim with different support levels.

To train WorkflowSim, from the traces of workflow
execution (training sets), we extracted information about job
runtime and overheads, such as average/distribution and, for
example, whether it has a cyclic increase shown in Figure 5.
We then added these parameters into the generation of
system overheads and simulated them as close as possible to
the real cases. Here, we do not discuss the randomization or
distribution of job runtime since we rely on CloudSim to
provide a convincing model of job execution.

To present an explicit comparison, we simulated the
cases using WorkflowSim that has no consideration of

workflow dependencies or overheads (Case 1),
WorkflowSim with Workflow Engine that has considered the
influence of dependencies but ignored overheads (Case 2),
and WorkflowSim, that has covered both aspects (Case 3).
Intuitively speaking, we expect that the order of the accuracy
of them should be Case 3 > Case 2 > Case 1.

Figure 8 Performance of WorkflowSim of Case 1 (No workflow engine,

or overhead support).

Figure 9 Performance of WorkflowSim of Case 2 (No overhead support)

Figure 7 shows the performance of WorkflowSim with
different support levels is consistent to our expectation. The
accuracy of Case 3 is quite close to but not equal to 1.0 in
most points. The reason is that to simulate workflows,
WorkflowSim has to simplify models with a few parameters,
such as the average value and the distribution type. It is not
efficient to recur every overhead as is present in the real
traces. It is also impossible to do since the traces within the
same training set may have much variance. Figure 7 also
shows that the accuracy of both Case 1 and Case 2 are much
lower than Case 3. The reason why Case 1 does not give an
exact result is that it ignores both dependencies and multiple
layers of overheads. By ignoring data dependencies, it
releases tasks that are not supposed to run since their parents
have not completed (a real workflow system should never do
that) and thereby reducing the overall runtime. At the same
time, it executes jobs/tasks irrespective of the actual
overheads, which further reduces the simulated overall
runtime. In Case 2, with the help of Workflow Engine,

WorkflowSim is able to control the release of tasks and
thereby the simulated overall runtime is closer to the real
traces. However, since it has ignored most overheads, jobs
are completed and returned earlier than that in real traces.
The low accuracy of Case 1 and Case 2 confirms the
necessity of introducing overhead design into our simulator.

To further evaluate our task/job model and the
performance of WorkflowSim, we adopted a cross-validation
approach in which we picked up one group of data set (e.g.,
k_t=20) as input traces/training sets and simulated all the
validation sets with k_v=20 to 100. To make it clear, we use
k_t to indicate the k for a training set and k_v for a validation
set. Then we compare the accuracy in Figure 8, Figure 9 and
Figure 10 respectively.

Figure 10 Performance of WorkflowSim of Case 3 (all features are
enabled)

Figure 8 and Figure 9 show similar conclusion as in
Figure 7 and the accuracy of Case 2 and Case 1 are not
sensitive to the task clustering. The reason is that Case 1 has
no support of data dependencies, where jobs are all
submitted at the beginning of workflow execution. Case 2
has no support of system overhead and thereby task
clustering does not improve the overall runtime much.

Figure 10 shows the simulated results of WorkflowSim,
which has considered both layered overhead and data
dependencies. Although the accuracy is closer to 1.0, it still
does not guarantee a 100% accuracy in some cases.
Particularly when we use a training set with a smaller k (e.g.,
k_t=20) to simulate the case with larger k (e.g., k_v=100), the
accuracy suffers (accuracy=1.8). The reason is that the
average Clustering Delay in the case of k=20 is much larger
than that of other cases (as shown in Figure 6), and thereby it
is still larger than the predicted one using an inverse
proportion function. Using such a large Clustering Delay to
simulate the case with many clustered jobs (k_v is large)
would extend the predicted overall runtime of workflow. Our
model has simplified and classified the distribution of
overheads based on the horizontal level of tasks but we still
need to further study the overhead distribution in accordance
to different clustering strategies. However, a complex model
may limit its general usage.

V. APPLICATIONS
With the features introduced in last section, we are able

to carry out research studies as follows.

A. Fault Tolerant Clustering
Task clustering has been proven to be an effective

method to reduce execution overhead and increase the
computational granularity of workflow tasks executing on
distributed resources. However, a job composed of multiple
tasks may have a greater risk of suffering from failures than
a job composed of a single task. In this section we use
WorkflowSim to indicate that such failures can have a
significant impact on the runtime performance of workflows
under existing clustering policies that ignore failures. We
therefore propose three dynamic methods to adjust the
clusters.size (the maximum number of tasks in a clustered
job) based on the measured failure rate: specifically,
WorkflowSim provides the modeling and simulation of the
layered overhead, job retry and failure generation. The three
methods are described as follows. Details of the
implementation are described in [1]. We use the same
Montage workflow and execution environment as that in
Section IV except that this is a failure-prone environment.
We compare the three methods with a default method that
has no optimization for faulty environments.

Figure 11 Performance of Fault Tolerant Clustering. NOOP uses the

original job retry without further optimization. DR uses dynamic
reclustering to improve the performance.

Figure 12 Performance of the three dynamic methods

• Dynamic Clustering (DC) decreases the clusters.size if
the measured job failure rate is high.

• Selective Reclustering (SR) selects the failed tasks in a
job and merges them into a new job for retry.

• Dynamic Reclustering (DR) selects the failed tasks in a
job and also adjusts the clusters.size if the measured job
failure rate is high. It is a combination of DC and SR.

• No Optimization (NOOP) retries the failed jobs without
identifying whether there are successful tasks in it.

Figure 11 shows that without any fault tolerant
optimization, the performance degrades significantly
especially when the task failure rate is high. Figure 12
compares the three methods that we proposed and it shows
that Dynamic Reclustering outperforms the other two
because it derives strengths from both. In reality, it is
difficult to simulate failures with precise failure rates while
WorkflowSim provides a unique platform to evaluate fault
tolerant designs.

B. Overhead Robustness of DAG Scheduling Heuristics

Figure 13 Influence of Queue Delay. The duration of overheads are

multipled by the weights.

With the emergence of distributed heterogeneous
systems, such as grids and clouds, and applications such as
large scale of workflows with complex data dependencies,
significant overheads can be incurred during workflow
execution. Most of the existing DAG scheduling heuristics
underestimate or even ignore the influence of workflow
overheads. In such a distributed environment, a carefully
crafted schedule based on deterministic and static
information may fail to provide a sufficient solution. In this
study, we analyze the overhead robustness of multiple static
and dynamic DAG scheduling heuristics. Overhead
robustness describes the influence of overheads on the
workflow runtime. We investigate whether the dynamic
change in workflow overheads influences the overall runtime
of workflows. The reason why we are interested in this study
is that in reality, system overheads are difficult to estimate or
track. Existing heuristics and algorithms may have different
sensitivity to the dynamic change of system overhead or the
inaccurate estimation of them. Analyzing their performance
in terms of the change of overheads can offer us a unique
aspect of their robustness in real systems and suggest the
direction of designing new heuristics or algorithms.

Figure 14 Influence of Workflow Engine Delay.

In this experiment, we doubled the computation
capabilities of half of the available resources so as to create
an environment where heuristics and algorithms can select
their allocated resources to execute workflow jobs. We
varied the duration of overheads by multiplying them with a
weight that ranges from 0.2 to 2.5 in our experiment. The
original workflow has the weight is 1.0. We evaluated the
performance of four heuristics with the same Montage
workflow used in Section VI:

• FCFS: First Come First Serve is the basic version of
scheduling algorithm used in our simulator. It assigns
each job, in the arriving order to the next available
resources, regardless of the jobs’ expected completion
time on that worker node. If there are multiple resources
available, it randomly chooses one as the candidate.

• MCT: Minimum Completion Time [2] assigns each job
in an arbitrary order to the available resource with the
best expected completion time of that job.

• MinMin: The MinMin [1] heuristic begins with a set of
all free jobs and then sorts them by the order of
completion time. The job with the minimum completion
time is selected and assigned to the corresponding
resource. Then, the newly mapped job is submitted to
the queue and the process repeats until all free jobs are
scheduled. The intuition of MinMin is to create a local
optimal path so as to reduce the overall runtime.

• MaxMin: Similar to MinMin, but MaxMin [2] picks up
the job with the maximum completion time and assigns
it to its best available resource. The intuition of MaxMin
is to avoid penalty from long running jobs.

Experiments show that overheads have significant
influence on the overall runtime and they have shown
different behaviors. Figure 13 and Figure 14 show the
influence of Queue Delay and Workflow Engine Delay
respectively. Consistent with our expectation, MinMin
performs worst compared to the other three methods since it
assigns the best resources to small jobs while longer jobs
have to wait and suffer overhead. MaxMin performs better
than MCT and FCFS slightly because it tends to assign
longer jobs to better resources and thereby reduces the
overall runtime. Figure 15 shows that when the weight of
Clustering Delay is lower than 1.0, MCT and FCFS perform

better than MinMin. However, when the weight of
Clustering Delay is larger than 2, MinMin performs better
than the other two. The reason is probably because
Clustering Delay only occurs to clustered jobs and in
Montage these levels have better parallelism than other
levels that have only non-clustered jobs. Increasing
Clustering Delay thereby offers MinMin a chance to enhance
its influence on the overall workflow execution. Therefore,
in such an environment, the selection of heuristics is not
sensitive to the estimation error of the Queue Delay or
Workflow Engine Delay because the overall runtime
increases at the same speed. However, the estimation error of
the Clustering Delay can change the heuristics’ relative
performance.

Figure 15 Influence of Clustering Delay.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a novel workflow

simulator WorkflowSim to assist researchers to evaluate
their workflow optimization techniques with better accuracy
and wider support than existing solutions. By comparing the
results of real traces and simulation, we have validated our
simulator and concluded that it is necessary to consider
multiple layers of overheads and failures.

In the future, we would also define more types of
failures, such as the Job Submit Failure that simulates the
case when a job is not successfully submitted due to a
problem in workflow scheduler or a network issue between it
and remote scheduler. We also plan to incorporate more
workflow techniques (such as workflow partitioning) into
our simulator. We will evaluate the influence of overheads in
other workflow metrics besides overall runtime, for example,
resource utility.

ACKNOWLEDGMENT
This work is supported by NFS under grant number IIS-

0905032 and 0910812. We thank the Pegasus team and the
FutureGrid team for their assistance and Gideon Juve for his
valuable comments. Any opinions, findings, and conclusions
or recommendations expressed in this work are those of the
authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] J. Blythe,S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K.
Kennedy. Task Scheduling Strategies for Workflow-Based
Applications in Grids. CCGrid 2005, 2005.

[2] T. D. Braun, H. J. Siegel, N. Beck, et al. A Comparison of Eleven
Static Heuristic for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems. Journal of Parallel
and Distributed Computing, 61, pp. 810-837, 2001.

[3] H. Topcuoglu, S. Hariri, and M. -Y. Wu., Performance-Effectiveand
Low-Complexity Task Scheduling for Heterogeneous Computing.
IEEE Transactions on Parallel and Distributed Systems, 13(3), pp.
260-274, 2002.

[4] Weiwei Chen, Ewa Deelman, Workflow Overhead Analysis and
Optimizations, The 6th Workshop on Workflows in Support of Large-
Scale Science, Seattle, USA, Nov 2011.

[5] Y. Zhang, etc., Performance Implications of Failures in Large-Scale
Cluster Scheduling, In 10th Workshop on Job Scheduling Strategies
for Parallel Processing, June 2004.

[6] Dong Tang, et al., Failure Analysis and Modeling of a VAXcluster
System, FTCS-20, 1990.

[7] B. Schroeder, et al., A large-scale study of failures in high-
performance computing systems, DSN 2006, Philadelphia, PA, USA,
Jun 2006.

[8] R. K. Sahoo, et al., Failure Data Analysis of a Large-Scale
Heterogeneous Server Environment, DSN 2004, Florence, Italy, Jul
2004.

[9] David Oppenheimer, et al., Why do Internet services fail, and what
can be done about it?, USITS’03, Seattle, USA, Mar 2003.

[10] S.R. McConnel, D.P. Siewiorek, and M.M. Tsao, "The Measurement
and Analysis of Transient Errors in Digital Compute Systems,'' Proc.
9th Int. Symp. Fault-Tolerant Computing, pp. 67-70, 1979.

[11] Anne Benoit, et al., On the complexity of task graph scheduling with
transient and fail-stop failures, Research report, LIP, Jan 2010

[12] Rodrigo N. Calheiros, et al., CloudSim: A Toolkit for Modeling and
Simulation of Cloud Computing Environments and Evaluation of
Resource Provisioning Algorithms, Software: Practice and
Experience, Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644,
Wiley Press, New York, USA, January 2011.

[13] Deelman, E., et al., Workflows and e-Science: An overview of
workflow system features and capabilities, Future Generation
Computer Systems, July 10th, 2008.

[14] Hirales-Carbajal, A., et al., A Grid simulation framework to study
advance scheduling strategies for complex workflow applications,
IPDPSW, April 2010, Atlanta, GA.

[15] Merdan, M., et al., Simulation of Workflow Scheduling Strategies
Using the MAST Test Management System, 10th Inrl., Conf. on
Control, Automation, Robotics and Vision, Hanoi, Vietnam, Dec
2008.

[16] G. Singh, et al., Workflow Task Clustering for Best Effort Systems
with Pegasus, Mardi Gras Conference, Baton Rouge, LA, Jan 2008.

[17] E. Deelman, et al., Pegasus: Mapping scientific workflows onto the
Grid. Lecture Notes in Computer Science: Grid Computing, pp. 11–
20, 2004

[18] Peter Couvares, Tevik Kosar, Alain Roy, Jeff Weber and Kent
Wenger, "Workflow in Condor", in In Workflows for e-Science,
Editors: I.Taylor, E.Deelman, D.Gannon, M.Shields, Springer Press,
January 2007 (ISBN: 1-84628-519-4)

[19] Douglas Thain, Todd Tannenbaum, and Miron Livny, "Distributed
Computing in Practice: The Condor Experience" Concurrency and
Computation: Practice and Experience, Vol. 17, No. 2-4, pages 323-
356, February-April, 2005

[20] G. B. Berriman, etc., "Montage: A Grid Enabled Engine for
Delivering Custom Science-Grade Mosaics On Demand," presented
at SPIE Conference 5487: Astronomical Telescopes, 2004.

[21] FutureGrid: https://portal.futuregrid.org/
[22] Weiwei Chen, Ewa Deelman, Fault Tolerant Clustering in Scientific

Workflows, IEEE Servcies 2012, Honolulu, Hawaii, June 2012.

