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Abstract—Simulation is one of the most popular evaluation 
methods in scientific workflow studies.  However, existing 
workflow simulators fail to provide a framework that takes 
into consideration heterogeneous system overheads and 
failures. They also lack the support for widely used workflow 
optimization techniques such as task clustering. In this paper, 
we introduce WorkflowSim, which extends the existing 
CloudSim simulator by providing a higher layer of workflow 
management. We also indicate that to ignore system overheads 
and failures in simulating scientific workflows could cause 
significant inaccuracies in the predicted workflow runtime. To 
further validate its value in promoting other research work, we 
introduce two promising research areas for which 
WorkflowSim provides a unique and effective evaluation 
platform.   

Keywords: workflow; clustering; overhead; failure; 
simulation. 

I.  INTRODUCTION  
Over the years, scientific workflows have emerged as a 

paradigm for representing complex distributed scientific 
computations. Scientific workflows can be composed of a 
large number of tasks and the execution of these tasks may 
require many complex modules and software. The evaluation 
of the performance of workflow optimization techniques in 
real infrastructures is complex and time consuming. As a 
result, simulation-based studies have become a widely 
accepted way to evaluate workflow systems. For example, 
scheduling algorithms, such as HEFT [3], Min-Min [1], 
Max-Min [2], etc., have used simulators to evaluate their 
effectiveness. A simulation-based approach reduces the 
complexity of the experimental setup and saves much effort 
in workflow execution by enabling the testing of their 
applications in a repeatable and controlled environment.  

However, an accurate simulation framework for scientific 
workflows is required to generate reasonable results, 
particularly considering that the overall system overhead [4] 
plays a significant role in the workflow’s runtime. In 
heterogeneous distributed systems, workflows may 
experience different types of overheads, which are defined as 
the time of performing miscellaneous work other than 
executing users’ computational activities.  Since the causes 
of overheads differ, the overheads have diverse distributions 
and behaviors. For example, the time to run a post-script that 

checks the return status of a computation is usually a 
constant. However, queue delays incurred while tasks are 
waiting in a batch scheduling systems can vary widely. By 
classifying these workflow overheads in different layers and 
system components, a simulator can offer a more accurate 
result than simulators that do not include overheads in their 
system models. 

What’s more, many researchers [5][6][7][8][9][10] have 
emphasized the importance of fault tolerant design and 
concluded that the failure rates in modern distributed systems 
should not be neglected. A simulation with support for 
randomization and layered failures is required to promote 
such studies.  

Finally, progress in workflow research also requires a 
general-purpose framework that can support widely accepted 
features of workflows and optimization techniques. Existing 
simulators such as CloudSim/GridSim[12] fail to provide 
fine granularity simulations of workflows. For example, they 
lack the support of task clustering, which is a popular 
technique that merges small tasks into a large job to reduce 
task execution overheads. The simulation of task clustering 
requires two layers of execution model, on both task and job 
levels. It also requires a workflow-clustering engine that 
launches algorithms and heuristics to cluster tasks. Other 
techniques such as workflow partitioning and task retry are 
also ignored in these simulators.  

 To the best of our knowledge, none of the current 
distributed system simulators support these rich-features and 
techniques. In this paper, we introduce our early work on 
simulating scientific workflows satisfying these 
requirements. We evaluate the performance of WorkflowSim 
with an example of task clustering. We further show that 
WorkflowSim is promising in providing an evaluation 
platform for research areas such as fault tolerant clustering 
and overhead robustness studies.  

The contribution of this paper includes an introduction of 
our WorkflowSim framework and how it distinguishes from 
other simulators in Section III. We also validate the 
performance of WorkflowSim with an example of task 
clustering in Section IV. Finally, in Section V, we discuss 
the promising usage of this simulation framework. The 
conclusion and future directions are presented in Section VI.  



II. RELATED WORK 
Deelman et. al. [13] have provided a survey of popular 

workflow systems for scientific applications and have 
classified their components into four categories: 
composition, mapping, execution, and provenance. Based on 
this survey, we identified the mandatory 
functionalities/components and designed the layers in our 
WorkflowSim. In our design, we add multiple layers on top 
of the existing workflow scheduling layer of CloudSim, 
which include the Workflow Mapper, the Workflow Engine, 
the Clustering Engine, the Failure Generator, the Failure 
Monitor etc. We will explain the details of these layers in 
Section III.  

CloudSim [12] is a popular framework for modeling and 
simulating cloud computing infrastructures and services. 
However, it only supports the execution of single workloads 
while our work focuses on workflow scheduling and 
execution. It has a simple model of task execution that does 
not consider task dependencies or clustering. It also ignores 
the occurrence of failures and overheads. WorkflowSim 
extends CloudSim to fulfill these new requirements. Other 
simulators [14][15] were specifically designed for a few 
desirable aspects of workflow management such as 
workflow scheduling, but such simplification does not match 
the ever-changing world of distributed computing and the 
evolution of new workflow management techniques. 
Therefore, rather than focusing on a specific aspect of 
workflow management, WorkflowSim attempts to extract the 
common features exposed by various workflow systems and 
to support widely used workflow management techniques. 
WorkflowSim supports not only the evaluation of scheduling 
techniques but also considers diverse task 
scheduling/execution overheads and failures.  

Task clustering [16] is a technique that merges fined-
grained tasks into coarse-grained jobs. After task clustering 
the number of jobs to be executed in a workflow is reduced 
and the cumulative workflow execution overhead is reduced 
as well. However, the paper’s clustering strategy is static and 
does not consider dynamic resource characteristics. Also, it 
does not consider the middleware overhead from diverse grid 
middleware services, such as the time to query resources, 
and the time to match jobs with resources, etc. These 
overheads are included in our model and the values are 
estimated based on real execution traces.  

Failure analysis and modeling [6] present system 
characteristics such as error and failure distribution and 
hazard rates. Schroeder et al. [7] have studied the statistics of 
the execution failure data, including the root cause of 
failures, the mean time between failures, and the mean time 
to repair. Sahoo et al. [8] analyzed the empirical and 
statistical properties of system errors and failures from a 
network of heterogeneous servers running a diverse 
workload. Benoit et al. [11] analyzed the impact of transient 
and fail-stop failures on the complexity of task graph 
scheduling.  Among all the failures, we focus on transient 
failures because they are expected to be more prevalent than 
permanent ones. Based on these works, we simulate failures 
in two layers (task/job) and provide an interface for users to 

develop fault tolerant algorithms.  In section V we will 
introduce our work in fault tolerant clustering.   

III. MODELS AND FEATURES 
As Figure 1 shows, there are multiple layers of 

components involved in preparing and executing a 
workflow. In this paper, the model of workflow management 
systems (WMS) is similar to that of Pegasus WMS [17], 
which contains: a Workflow Mapper to map abstract 
workflows to concrete workflows that are dependent on 
execution sites; a Workflow Engine to handle the data 
dependencies; and a Workflow Scheduler to match jobs to 
resources. Other components include a Clustering Engine 
that merges small tasks into a large job, a Provenance 
collector that tracks the history of task/job execution and a 
Workflow Partitioner that divides the user workflow into 
multiple sub-workflows. WorkflowSim has implemented 
these functionalities as follows.  

A. Components 
1) Workflow Mapper 

We model workflows as Directed Acyclic Graphs 
(DAGs), where jobs represent users’ computation to be 
executed and directed edges represent data or control flow 
dependencies between the jobs. Figure 2 (Left) shows an 
example of the Montage workflow with 9 horizontal levels 
and 18 tasks together. Montage [20] is an astronomy 
application used to construct large image mosaics of the sky. 
All the tasks at a horizontal level of the Montage workflow 
are invocations of the same routing operating on different 
input data. For example, tasks at the first level are 
invocations of mProjectPP, which reprojects an input image 
to the scale defined by a template header file.  The Workflow 
Mapper is used to import DAG files formatted in XML and 
other metadata information such as file size. After mapping, 
the Workflow Mapper creates a list of tasks and assigns these 
tasks to an execution site. A task is a program/activity that a 
user would like to execute.  

 

 
Figure 1 WorkflowSim Overview. The area surrounded by red lines is 

supported by CloudSim.    

2) Clustering Engine 
We define a task as a program that a user would like to 

execute. A job is an atomic unit seen by the execution 
system, which contains multiple tasks to be executed in 



sequence or in parallel. The Clustering Engine merges tasks 
into jobs so as to reduce the scheduling overheads. Figure 2 
(Right) shows an example workflow after horizontal 
clustering, which merges tasks at the same horizontal levels 
in the original workflow graph. There are other types of 
clustering strategies, such as for example vertical clustering 
that merge tasks at the same pipeline vertically. 

3) Workflow Engine  
The Workflow Engine manages jobs based on their 

dependencies to assure that a job may only be released when 
all of its parent jobs have completed successfully. The 
Workflow Engine will only release free jobs to the 
Scheduler. In the real execution we studied, we use 
DAGMan [18] as the Workflow Engine.  

 
Figure 2 Original Montage Workflow (Left) and the workflow after 

horizontal clustering (Right).  

4) Workflow Scheduler and Job Execution 
The Workflow Scheduler is used to match jobs to worker 

nodes based on the criteria selected by users (MaxMin [2], 
MinMin [1], and many other heuristics). While CloudSim 
has already supported static scheduling algorithms, we added 
the support of dynamic workflow algorithms. For static 
algorithms, jobs are assigned to a worker node at the 
workflow planning stage. When the job reaches the remote 
scheduler, it will just wait until the assigned worker node is 
free. For dynamic algorithms, jobs are matched to a worker 
node in the remote scheduler whenever a worker node 
becomes idle. WorkflowSim relies on CloudSim to provide 
an accurate and reliable job-level execution model, such as 
time-shared model and space-shared model. However, 
WorkflowSim has introduced different layers of overheads 
and failures, which improves the accuracy of simulation.  

 
Figure 3 Interaction between components.    

To associate and coordinate these layers, we adopted an 
event-based approach where each component maintains a 
message queue. Figure 3 shows a simple configuration with 
two execution sites, of which each has two nodes. Each 
component maintains its own message queue and iteratively 
checks whether it can process one message. For example, at 
each iteration, the Clustering Engine checks whether it has 
received new tasks from the Workflow Engine and whether 
it should release new jobs to the Scheduler. When none of 
these components have any more messages in queue, the 
simulation is completed.  

B. Layered Overhead 
Based on our prior studies on workflow overheads, we 

add layered overhead to the workflow simulation. We have 
classified workflow overheads into five categories as 
follows.  

• Workflow Engine Delay measures the time between 
when the last parent job of a job completes and the time 
when the job gets submitted to the local queue. In case 
of retries the value of the last retry is used for the 
calculation. Since we use a DAG model to represent 
workflows, the completion time of the last parent job 
means this job is released to the ready queue and is 
waiting for resources to be assigned to it. The workflow 
engine delay reflects the efficiency of a workflow 
engine (in our case DAGMan).  

• Queue Delay is defined as the time between the 
submission of a job by the workflow engine to the local 
queue and the time the local scheduler sees the job 
running (potentially on remote resources). This 
overhead reflects the efficiency of the workflow 
scheduler (e.g., Condor [19]) to execute a job and the 
availability of resources for the execution of the job. In 
case of retries the value is the cumulative of all the 
retries.   

• Postscript Delay and Prescript Delay is the time taken 
to execute a lightweight script under some execution 
systems before and after the execution of a job. 
Prescripts are usually used to create directories for job 
execution. Postscripts examine the exit code of a job 
after the computational part of the job is done. 

• Data Transfer Delay happens when data is transferred 
between nodes. It includes three different types of 
processes: staging data in, cleaning up, and staging data 
out. Stage-in jobs transfer input files from source sites to 
execution sites before the computation starts. Cleanup 
jobs delete intermediate data that is no longer needed by 
the remainder of the workflow. Stage-out jobs transfer 
workflow output data to archiving sites for storage and 
analysis. 

• Clustering Delay measures the difference between the 
sum of the actual task runtime and the job runtime seen 
by the Workflow Scheduler. The cause of Clustering 
Delay is usually the use a job wrapper used to execute a 
clustered job. The wrapper takes some time to extract 
the list of tasks and to launch them.  



                              
Figure 4 Workflow overhead and runtime.  Clustering Delay and Data 

Transfer Delay are not shown (included in Runtime).  

  
Figure 5 Workflow Engine Delay of mProjectPP.   

In our prior work [4], we have introduced the distribution 
of overheads and the relationship between them. Following 
this, we indicate the necessity to consider the distribution of 
overheads rather than simply adding a constant delay after 
job execution. We use Workflow Engine Delay as an 
example to show the necessity to model overheads 
appropriately. Figure 4 shows a real trace of overheads and 
runtime in Montage 8 degree workflow (for scaling issues, 
we only show the first 15 jobs in the mProjectPP level). We 
can see that the Workflow Engine Delay increases steadily 
after every five jobs. For example, the Workflow Engine 
Delay of jobs with ID from 6 to 10 is approximately twice of 
that of jobs ranging from ID1 to ID5. Figure 5 further shows 
the distribution of Workflow Engine Delay of mProjectPP 
level in Montage workflow that was run five times. After 
every five jobs, the Workflow Engine Delay increases by 8 
seconds approximately. We call this special feature of 
workflow overhead as cyclic increase. The reason is that the 
Workflow Engine (in this trace it is DAGMan) releases five 
jobs by default in every working cycle. Therefore, simply 
adding a constant delay after every job execution has ignored 
its potential influence on the performance. For this reason we 
adopt a message queue based approach and iteratively check 
the message queues in WorkflowSim. 

Figure 6 shows the average value of Clustering Delay of 
mProjectPP, mDiffFit, and mBackground. It is clear that 
with the increase of k (the maximum number of jobs per 
horizontal level), there are less and less tasks in a clustered 

job, and thus the Clustering Delay for each job decreases. 
For simplicity, we use an inverse proportion model in Eq. (1) 
to describe this trend of Clustering Delay with k. Intuitively 
we assume that the average delay per task in a clustered job 
is constant (n is the number of tasks in a horizontal level). 
An inverse proportion model can estimate the delay when 
k=i directly if we have known the delay when k=j. Therefore 
we can predict all the clustering cases as long as we have 
gathered one clustering case. This capability is required in 
our validation in Section IV. Other complex models may 
require multiple clustering cases to predict all other 
clustering cases.  
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Figure 6 Clustering Delay of mProjectPP, mDiffFit, and mBackground 

C. Layered Failures and Job Retry 
Failures can occur at different times during the workflow 

execution. Consistent with the definition of tasks and job, we 
divide transient failures into two categories: task failure and 
job failure. If the transient failure affects the computation of 
a task (task failure), other tasks within the job do not 
necessarily fail. If the transient failure affects the clustered 
job (job failure), all of its tasks fail. We have added two 
components in response to the simulation of failures: 

• Failure Generator component is introduced to inject 
task/job failures at each execution site. After the 
execution of each job, Failure Generator randomly 
generates task/job failures based on the distribution and 
average failure rate that a user has specified.  

• Failure Monitor collects failure records (e.g., resource 
id, job id, task id) and returns them to the workflow 
management system so that it can adjust the scheduling 
strategies dynamically.  

We also modified other components to support fault 
tolerant optimization. In a failure-prone environment, there 
are several options to improve workflow performance. First, 
one can simply retry the entire job or only the failed part of 
this job when its computation is not successful. This 
functionality is added to the Workflow Scheduler, which 
checks the status of a job and takes action based on the 
strategies that a user selects. Furthermore, Reclustering is a 
technique that we have proposed [1] that attempts to adjust 
the task clustering strategy based on the detected failure rate. 



This functionality is added to the Workflow Engine. Details 
of this method are explained in Section V.A.  

IV. VALIDATION 
We use task clustering as an example to illustrate the 

necessity of introducing overheads into workflow simulation. 
The goal was to compare the simulated overall runtime of 
workflows in case the information of job runtime and system 
overheads are known and extracted from prior traces.  

In this example, we collected real traces generated by the 
Pegasus Workflow Management System while executing 
workflows on FutureGrid [21]. We built an execution site 
with 20 worker nodes and we executed the Montage 
workflow five times in every single configuration of k, 
which is the maximum number of clustered jobs in a 
horizontal level. These five traces of workflow execution 
with the same k is a training set or a validation set. Partly 
illustrated by Figure 5, the results are stable enough to be 
used as a training set. We ran the Montage workflow with a 
size of 8-degree squares of sky. The workflow has 10,422 
tasks and 57GB of overall data. We tried different k from 20 
to 100, leaving us 5 groups of data sets with each group 
having 5 workflow traces.  

First of all, we adopt a simple approach that picks up a 
training set to train WorkflowSim and then use the same 
training set as validation set to compare the predicted overall 
runtime and the real overall runtime in the traces. We define 
accuracy in this section as the ratio between the predicted 
overall runtime and the real overall runtime: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑂𝑣𝑒𝑟𝑎𝑙𝑙  𝑅𝑢𝑛𝑡𝑖𝑚𝑒
𝑅𝑒𝑎𝑙  𝑂𝑣𝑒𝑟𝑎𝑙𝑙  𝑅𝑢𝑛𝑡𝑖𝑚𝑒            (2) 

 

 
Figure 7 Performance of WorkflowSim with different support levels.  

To train WorkflowSim, from the traces of workflow 
execution (training sets), we extracted information about job 
runtime and overheads, such as average/distribution and, for 
example, whether it has a cyclic increase shown in Figure 5. 
We then added these parameters into the generation of 
system overheads and simulated them as close as possible to 
the real cases. Here, we do not discuss the randomization or 
distribution of job runtime since we rely on CloudSim to 
provide a convincing model of job execution. 

To present an explicit comparison, we simulated the 
cases using WorkflowSim that has no consideration of 

workflow dependencies or overheads (Case 1), 
WorkflowSim with Workflow Engine that has considered the 
influence of dependencies but ignored overheads (Case 2), 
and WorkflowSim, that has covered both aspects (Case 3). 
Intuitively speaking, we expect that the order of the accuracy 
of them should be Case 3 > Case 2 > Case 1.   

 

 
Figure 8 Performance of WorkflowSim of Case 1 (No workflow engine, 

or overhead support). 

 
Figure 9 Performance of WorkflowSim of Case 2 (No overhead support) 

Figure 7 shows the performance of WorkflowSim with 
different support levels is consistent to our expectation. The 
accuracy of Case 3 is quite close to but not equal to 1.0 in 
most points. The reason is that to simulate workflows, 
WorkflowSim has to simplify models with a few parameters, 
such as the average value and the distribution type. It is not 
efficient to recur every overhead as is present in the real 
traces. It is also impossible to do since the traces within the 
same training set may have much variance. Figure 7 also 
shows that the accuracy of both Case 1 and Case 2 are much 
lower than Case 3. The reason why Case 1 does not give an 
exact result is that it ignores both dependencies and multiple 
layers of overheads. By ignoring data dependencies, it 
releases tasks that are not supposed to run since their parents 
have not completed (a real workflow system should never do 
that) and thereby reducing the overall runtime. At the same 
time, it executes jobs/tasks irrespective of the actual 
overheads, which further reduces the simulated overall 
runtime. In Case 2, with the help of Workflow Engine, 



WorkflowSim is able to control the release of tasks and 
thereby the simulated overall runtime is closer to the real 
traces. However, since it has ignored most overheads, jobs 
are completed and returned earlier than that in real traces. 
The low accuracy of Case 1 and Case 2 confirms the 
necessity of introducing overhead design into our simulator.  

To further evaluate our task/job model and the 
performance of WorkflowSim, we adopted a cross-validation 
approach in which we picked up one group of data set (e.g., 
k_t=20) as input traces/training sets and simulated all the 
validation sets with k_v=20 to 100. To make it clear, we use 
k_t to indicate the k for a training set and k_v for a validation 
set. Then we compare the accuracy in Figure 8, Figure 9 and 
Figure 10 respectively.  

 

Figure 10 Performance of WorkflowSim of Case 3 (all features are 
enabled) 

Figure 8 and Figure 9 show similar conclusion as in 
Figure 7 and the accuracy of Case 2 and Case 1 are not 
sensitive to the task clustering. The reason is that Case 1 has 
no support of data dependencies, where jobs are all 
submitted at the beginning of workflow execution.  Case 2 
has no support of system overhead and thereby task 
clustering does not improve the overall runtime much.  

Figure 10 shows the simulated results of WorkflowSim, 
which has considered both layered overhead and data 
dependencies. Although the accuracy is closer to 1.0, it still 
does not guarantee a 100% accuracy in some cases. 
Particularly when we use a training set with a smaller k (e.g., 
k_t=20) to simulate the case with larger k (e.g., k_v=100), the 
accuracy suffers (accuracy=1.8). The reason is that the 
average Clustering Delay in the case of k=20 is much larger 
than that of other cases (as shown in Figure 6), and thereby it 
is still larger than the predicted one using an inverse 
proportion function. Using such a large Clustering Delay to 
simulate the case with many clustered jobs (k_v is large) 
would extend the predicted overall runtime of workflow. Our 
model has simplified and classified the distribution of 
overheads based on the horizontal level of tasks but we still 
need to further study the overhead distribution in accordance 
to different clustering strategies. However, a complex model 
may limit its general usage.   

V. APPLICATIONS 
With the features introduced in last section, we are able 

to carry out research studies as follows. 

A. Fault Tolerant Clustering 
Task clustering has been proven to be an effective 

method to reduce execution overhead and increase the 
computational granularity of workflow tasks executing on 
distributed resources. However, a job composed of multiple 
tasks may have a greater risk of suffering from failures than 
a job composed of a single task. In this section we use 
WorkflowSim to indicate that such failures can have a 
significant impact on the runtime performance of workflows 
under existing clustering policies that ignore failures. We 
therefore propose three dynamic methods to adjust the 
clusters.size (the maximum number of tasks in a clustered 
job) based on the measured failure rate: specifically, 
WorkflowSim provides the modeling and simulation of the 
layered overhead, job retry and failure generation. The three 
methods are described as follows. Details of the 
implementation are described in [1]. We use the same 
Montage workflow and execution environment as that in 
Section IV except that this is a failure-prone environment. 
We compare the three methods with a default method that 
has no optimization for faulty environments. 

 
Figure 11 Performance of Fault Tolerant Clustering. NOOP uses the 

original job retry without further optimization. DR uses dynamic 
reclustering to improve the performance. 

 

Figure 12 Performance of the three dynamic methods 

• Dynamic Clustering (DC) decreases the clusters.size if 
the measured job failure rate is high.  



• Selective Reclustering (SR) selects the failed tasks in a 
job and merges them into a new job for retry.  

• Dynamic Reclustering (DR) selects the failed tasks in a 
job and also adjusts the clusters.size if the measured job 
failure rate is high. It is a combination of DC and SR.  

• No Optimization (NOOP) retries the failed jobs without 
identifying whether there are successful tasks in it.  

Figure 11 shows that without any fault tolerant 
optimization, the performance degrades significantly 
especially when the task failure rate is high. Figure 12 
compares the three methods that we proposed and it shows 
that Dynamic Reclustering outperforms the other two 
because it derives strengths from both. In reality, it is 
difficult to simulate failures with precise failure rates while 
WorkflowSim provides a unique platform to evaluate fault 
tolerant designs.  

B. Overhead Robustness of DAG Scheduling Heuristics 
 

 
Figure 13 Influence of Queue Delay. The duration of overheads are 

multipled by the weights. 

With the emergence of distributed heterogeneous 
systems, such as grids and clouds, and applications such as  
large scale of workflows with  complex data dependencies, 
significant overheads can be incurred during workflow 
execution. Most of the existing DAG scheduling heuristics 
underestimate or even ignore the influence of workflow 
overheads. In such a distributed environment, a carefully 
crafted schedule based on deterministic and static 
information may fail to provide a sufficient solution. In this 
study, we analyze the overhead robustness of multiple static 
and dynamic DAG scheduling heuristics. Overhead 
robustness describes the influence of overheads on the 
workflow runtime. We investigate whether the dynamic 
change in workflow overheads influences the overall runtime 
of workflows. The reason why we are interested in this study 
is that in reality, system overheads are difficult to estimate or 
track. Existing heuristics and algorithms may have different 
sensitivity to the dynamic change of system overhead or the 
inaccurate estimation of them. Analyzing their performance 
in terms of the change of overheads can offer us a unique 
aspect of their robustness in real systems and suggest the 
direction of designing new heuristics or algorithms. 

 
Figure 14 Influence of Workflow Engine Delay. 

In this experiment, we doubled the computation 
capabilities of half of the available resources so as to create 
an environment where heuristics and algorithms can select 
their allocated resources to execute workflow jobs.  We 
varied the duration of overheads by multiplying them with a 
weight that ranges from 0.2 to 2.5 in our experiment. The 
original workflow has the weight is 1.0. We evaluated the 
performance of four heuristics with the same Montage 
workflow used in Section VI:  

• FCFS: First Come First Serve is the basic version of 
scheduling algorithm used in our simulator. It assigns 
each job, in the arriving order to the next available 
resources, regardless of the jobs’ expected completion 
time on that worker node. If there are multiple resources 
available, it randomly chooses one as the candidate.  

• MCT: Minimum Completion Time [2] assigns each job 
in an arbitrary order to the available resource with the 
best expected completion time of that job.  

• MinMin: The MinMin [1] heuristic begins with a set of 
all free jobs and then sorts them by the order of 
completion time. The job with the minimum completion 
time is selected and assigned to the corresponding 
resource. Then, the newly mapped job is submitted to 
the queue and the process repeats until all free jobs are 
scheduled. The intuition of MinMin is to create a local 
optimal path so as to reduce the overall runtime.  

• MaxMin: Similar to MinMin, but MaxMin [2] picks up 
the job with the maximum completion time and assigns 
it to its best available resource. The intuition of MaxMin 
is to avoid penalty from long running jobs.  

Experiments show that overheads have significant 
influence on the overall runtime and they have shown 
different behaviors. Figure 13 and Figure 14 show the 
influence of Queue Delay and Workflow Engine Delay 
respectively. Consistent with our expectation, MinMin 
performs worst compared to the other three methods since it 
assigns the best resources to small jobs while longer jobs 
have to wait and suffer overhead. MaxMin performs better 
than MCT and FCFS slightly because it tends to assign 
longer jobs to better resources and thereby reduces the 
overall runtime. Figure 15 shows that when the weight of 
Clustering Delay is lower than 1.0, MCT and FCFS perform 



better than MinMin. However, when the weight of 
Clustering Delay is larger than 2, MinMin performs better 
than the other two. The reason is probably because 
Clustering Delay only occurs to clustered jobs and in 
Montage these levels have better parallelism than other 
levels that have only non-clustered jobs. Increasing 
Clustering Delay thereby offers MinMin a chance to enhance 
its influence on the overall workflow execution. Therefore, 
in such an environment, the selection of heuristics is not 
sensitive to the estimation error of the Queue Delay or 
Workflow Engine Delay because the overall runtime 
increases at the same speed. However, the estimation error of 
the Clustering Delay can change the heuristics’ relative 
performance.  

 
Figure 15 Influence of Clustering Delay. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have introduced a novel workflow 

simulator WorkflowSim to assist researchers to evaluate 
their workflow optimization techniques with better accuracy 
and wider support than existing solutions. By comparing the 
results of real traces and simulation, we have validated our 
simulator and concluded that it is necessary to consider 
multiple layers of overheads and failures.  

In the future, we would also define more types of 
failures, such as the Job Submit Failure that simulates the 
case when a job is not successfully submitted due to a 
problem in workflow scheduler or a network issue between it 
and remote scheduler. We also plan to incorporate more 
workflow techniques (such as workflow partitioning) into 
our simulator. We will evaluate the influence of overheads in 
other workflow metrics besides overall runtime, for example, 
resource utility.  

ACKNOWLEDGMENT 
This work is supported by NFS under grant number IIS-

0905032 and 0910812. We thank the Pegasus team and the 
FutureGrid team for their assistance and Gideon Juve for his 
valuable comments. Any opinions, findings, and conclusions 
or recommendations expressed in this work are those of the 
authors and do not necessarily reflect the views of the NSF. 

REFERENCES 
 

[1] J. Blythe,S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. 
Kennedy. Task Scheduling Strategies for Workflow-Based 
Applications in Grids. CCGrid 2005, 2005. 

[2] T. D. Braun, H. J. Siegel, N. Beck, et al. A Comparison of Eleven 
Static Heuristic for Mapping a Class of Independent Tasks onto 
Heterogeneous Distributed Computing Systems. Journal of Parallel 
and Distributed Computing, 61, pp. 810-837, 2001. 

[3] H. Topcuoglu, S. Hariri, and M. -Y. Wu., Performance-Effectiveand 
Low-Complexity Task Scheduling for Heterogeneous Computing. 
IEEE Transactions on Parallel and Distributed Systems, 13(3), pp. 
260-274, 2002. 

[4] Weiwei Chen, Ewa Deelman, Workflow Overhead Analysis and 
Optimizations, The 6th Workshop on Workflows in Support of Large-
Scale Science, Seattle, USA, Nov 2011. 

[5] Y. Zhang, etc., Performance Implications of Failures in Large-Scale 
Cluster Scheduling, In 10th Workshop on Job Scheduling Strategies 
for Parallel Processing, June 2004.  

[6] Dong Tang, et al., Failure Analysis and Modeling of a VAXcluster 
System, FTCS-20, 1990. 

[7] B. Schroeder, et al., A large-scale study of failures in high-
performance computing systems, DSN 2006, Philadelphia, PA, USA, 
Jun 2006.  

[8] R. K. Sahoo, et al., Failure Data Analysis of a Large-Scale 
Heterogeneous Server Environment, DSN 2004, Florence, Italy, Jul 
2004.  

[9] David Oppenheimer, et al., Why do Internet services fail, and what 
can be done about it?, USITS’03, Seattle, USA, Mar 2003.  

[10] S.R. McConnel, D.P. Siewiorek, and M.M. Tsao, "The Measurement 
and Analysis of Transient Errors in Digital Compute Systems,'' Proc. 
9th Int. Symp. Fault-Tolerant Computing, pp. 67-70, 1979. 

[11] Anne Benoit, et al., On the complexity of task graph scheduling with 
transient and fail-stop failures, Research report, LIP, Jan 2010 

[12] Rodrigo N. Calheiros, et al., CloudSim: A Toolkit for Modeling and 
Simulation of Cloud Computing Environments and Evaluation of 
Resource Provisioning Algorithms, Software: Practice and 
Experience, Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644, 
Wiley Press, New York, USA, January 2011.  

[13] Deelman, E., et al., Workflows and e-Science: An overview of 
workflow system features and capabilities, Future Generation 
Computer Systems, July 10th, 2008.  

[14] Hirales-Carbajal, A., et al., A Grid simulation framework to study 
advance scheduling strategies for complex workflow applications, 
IPDPSW, April 2010, Atlanta, GA.  

[15] Merdan, M., et al., Simulation of Workflow Scheduling Strategies 
Using the MAST Test Management System, 10th Inrl., Conf. on 
Control, Automation, Robotics and Vision, Hanoi, Vietnam, Dec 
2008. 

[16] G. Singh, et al., Workflow Task Clustering for Best Effort Systems 
with Pegasus, Mardi Gras Conference, Baton Rouge, LA,  Jan 2008.   

[17] E. Deelman, et al., Pegasus: Mapping scientific workflows onto the 
Grid. Lecture Notes in Computer Science: Grid Computing, pp. 11–
20, 2004 

[18] Peter Couvares, Tevik Kosar, Alain Roy, Jeff Weber and Kent 
Wenger, "Workflow in Condor", in In Workflows for e-Science, 
Editors: I.Taylor, E.Deelman, D.Gannon, M.Shields, Springer Press, 
January 2007 (ISBN: 1-84628-519-4) 

[19] Douglas Thain, Todd Tannenbaum, and Miron Livny, "Distributed 
Computing in Practice: The Condor Experience" Concurrency and 
Computation: Practice and Experience, Vol. 17, No. 2-4, pages 323-
356, February-April, 2005 

[20] G. B. Berriman, etc., "Montage: A Grid Enabled Engine for 
Delivering Custom Science-Grade Mosaics On Demand," presented 
at SPIE Conference 5487: Astronomical Telescopes, 2004. 

[21] FutureGrid: https://portal.futuregrid.org/ 
[22] Weiwei Chen, Ewa Deelman, Fault Tolerant Clustering in Scientific 

Workflows, IEEE Servcies 2012, Honolulu, Hawaii, June 2012. 


