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Abstract—As scientific applications generate and consume data 
at ever-increasing rates, scientific workflow systems that manage 
the growing complexity of analyses and data movement will 
increase in importance. The goal of our work is to improve the 
overall performance of scientific workflows by using policy to 
improve data staging into and out of computational resources. 
We developed a Policy Service that gives advice to the workflow 
system about how to stage data, including advice on the order of 
data transfers and on transfer parameters. The Policy Service 
gives this advice based on its knowledge of ongoing transfers, 
recent transfer performance, and the current allocation of 
resources for data staging. The paper describes the architecture 
of the Policy Service and its integration with the Pegasus 
Workflow Management System. It employs a range of policies for 
data staging, and presents performance results for one policy that 
does a greedy allocation of data transfer streams between source 
and destination sites. The results show performance 
improvements for a data-intensive workflow: the Montage 
astronomy workflow augmented to perform additional large data 
staging operations.  

Index Terms—data placement, scientific workflow, policy 
service, greedy allocation policy.  

I. INTRODUCTION  
Scientific applications in a number of domains are 

generating and consuming data at increasing rates. As a result, 
the analyses needed to process these data are becoming ever 
more complex, and they are often built out of individual 
application components. These components often must execute 
in a specific order, based on data or control dependencies 
among the components. The trend of ever increasing data sizes 
and of growing analysis complexity is expected to continue and 
to pose ever greater scalability challenges on the application 
and on resource management systems [1]. 

Scientific workflows are a way of managing these complex 
scientific analyses [2, 3]. Workflows allow scientists to 
declaratively describe their application’s components and the 
application inputs and outputs. Often, the data in the workflows 
are represented in files. Due to the large data sizes and the 
complexity of the computations, these workflows need to be 
executed on remote, potentially distributed resources such as 
campus clusters, grids, and clouds. The data sets may be 
distributed over the wide area network as well. Thus, workflow 

management systems need to be able to orchestrate the 
execution of the computations on the available resources, and 
they also need to manage the staging of data in and out of 
computational resources. Since storage, especially at 
computational sites, is finite, the workflow management system 
also needs to remove data that are no longer needed for 
upcoming computations. 

The goal of our work is to improve the overall performance 
of scientific workflows by using policy to improve the 
performance of data staging into and out of computational 
resources. Our approach is to off-load data staging policy 
decisions from the workflow management system to a Policy 
Service, which is aware of ongoing transfers, recent data 
transfer performance, and the current allocation of storage and 
network resources for data staging. The policy engine then 
balances the data movement within a workflow and across 
multiple concurrently executing workflows. 

The contributions of this paper are: 
• An architecture and implementation of a general policy 

service that can be tailored to specific purposes, such 
as workflow management in this paper or to adaptive 
data transfer [4]. 

• The integration of the policy service with a workflow 
system: the Pegasus Workflow Management System 
[5]. 

• A set of data staging policies that can be applied within 
the service and the implementation of two of them in 
policy rules.  

• Initial performance results for one data staging policy 
based on greedy allocation of streams to data transfers 
between source and destination sites.  

Our evaluation shows that by managing stream allocations, 
we can significantly improve the performance of an astronomy 
workflow (Montage) that is augmented to perform additional 
large data staging operations, a scenario that is reflective of 
emerging big data applications [6-8]. 

II. POLICY ENGINE  
Fig. 1 shows the architecture of our Policy Service, which 

provides advice to Pegasus about data staging and cleanup 
operations performed as part of the workflow execution while 
taking into account the entire data staging environment. The 



Policy Service removes duplicate staging and cleanup requests, 
allows multiple workflows to share staged files safely, defines 
the default number of parallel streams to use for each transfer, 
and enforces a maximum number of parallel streams to be 
allocated between a source and destination host. 

A. Architecture Overview 
As shown in Fig. 1 our Policy Service architecture consists 

of the following components. An Apache Tomcat Container 
manages the runtime environment of the Policy Service 
components. A RESTful Web Interface allows access to the 
policy service over the web using XML or JSON data 
structures. A Policy Controller manages communication 
between the web interface and the policy engine. The Policy 
Service or policy engine manages policy sessions that contain 
Policy Rules and persistent Policy Memory. Policy rules 
specify the required behavior for data staging and cleanup 
operations in the system; these rules are separated from 
application logic so that they can be customized to fit the 
requirements of the deployed environment. Finally, Policy 
Memory retains the current knowledge stored in the policy 
engine; its state persists for the length of transfer and cleanup 
requests. 

 

 

B. Integration of Policy Engine with Pegasus Workflow 
Management System 
The Policy Engine applies specified policy rules to data 

transfer operations of a Pegasus workflow. Next, we describe 
how our Policy Engine is integrated with Pegasus for data 
staging and cleanup operations. 

 
1) Data Staging Requests 

During its planning phase, Pegasus adds to the workflow 
data staging tasks that move input data sets to resources where 
compute jobs will execute, that transfer intermediate results 

from one compute resource to another, and that transfer results 
to permanent storage.  

Pegasus stages all required data input files for each 
compute job before releasing the job for execution. If Pegasus 
is configured to use task clustering (combining multiple 
workflow tasks into a single executable job) [9], then the data 
staging operations are grouped together, with the number of 
groups of transfers set by the clustering factor; clustering 
groups multiple transfers together for greater transfer 
efficiency.   Fig. 2 illustrates data clustering with two data 
transfer tasks. In the non-clustering case, there is initialization 
overhead between transfer jobs. Grouping multiple transfers 
together can improve transfer efficiency by eliminating these 
overheads. Each cluster transfers or stages its files by initiating 
data transfers serially using the Pegasus Transfer Tool (PTT), 
which initiates data transfers using GridFTP, HTTP, or other 
transfer protocols. 

We integrated the Policy Service with the Pegasus 
Workflow Management system via the Pegasus Transfer Tool. 
We modified the PTT so that when it receives a list of transfers 
to perform, it first sends this list of transfer requests to the 
Policy Engine, which applies policies to the pending transfers. 
Based on these policies, the Policy Service can assign priorities 
to the transfers, group the transfers based on specified criteria, 
and offer advice on appropriate transfer parameters.  

The PTT sends transfer requests to the Policy Controller via 
HTTP using its RESTful Web Interface. The Policy Controller 
delegates this list of transfers to the Policy Service. The Policy 
Service then adds the list of transfers to the Policy Memory and 
evaluates the state of the policy session against the set of 
predefined Policy Rules. After these rules have been enforced, 
the Policy Service constructs a modified list of transfers and 
sends the list back to the Pegasus Transfer Tool through the 
Policy Controller and RESTful Web Interface. The Policy 
Service assigns each transfer a unique ID so that the transfers 
can be monitored and modified.   

Modifications to the transfer list by the Policy Service may 
include removing duplicate transfers, grouping transfers for 
greater efficiency, and modifying transfer parameters. Based on 
the state that it maintains about pending and completed 
transfers, the Policy Service identifies duplicate transfer 
requests that are in progress or have already been successfully 
staged by the current workflow or by another workflow. The 
Policy Service removes those duplicate transfers from the list 
that is returned to the PTT for transfer execution.  

 
Fig. 2. Illustration of clustering with 2 data jobs and 2 transfers performed at a 

time. 

Fig. 1. Overview of Policy Service Architecture. 



The Policy Service can also group transfers together based 
on specified policies. For example, we implemented policy 
rules that sort the list of transfers by source and destination 
URLs. The Policy Service then assigns a common Group ID to 
transfers with the same source and destination URLs before 
returning the list of transfers to the PTT, so that the transfer 
client can perform these operations in a single session to 
achieve greater transfer efficiency. 

The Policy Service also gives advice on transfer 
parameters, such as the desired number of parallel streams for 
each transfer, to manage and optimize the throughput of 
concurrent staging operations between source and destination 
hosts. We use this capability in the greedy and balanced stream 
allocation policies described in Section III. 

Once it receives the modified list of transfers from the 
Policy Engine, the Pegasus Transfer Tool processes all the 
transfers in each group sequentially, using the sorted order and 
transfer parameters specified by the Policy Engine. 

After the Pegasus Transfer Tool completes the specified 
data transfers, it sends a list of completed transfers to the Policy 
Service. The detailed state about successfully completed 
transfers is removed from the Policy Memory; however, the 
Policy Service maintains information about the location of 
staged files so that it can prevent subsequent staging operations 
from restaging the same files.  

 
2) Cleanup Requests 

Workflows also include cleanup jobs that delete files (such 
as intermediate results) that are no longer needed for workflow 
execution. Each Pegasus cleanup process submits the list of 
files that it is assigned to remove to the Policy Server via HTTP 
using its RESTful Web Interface. As before, the Policy 
Controller delegates this list of files to the Policy Service, 
which adds the list of files to be deleted to the Policy Memory. 
The Policy Service then evaluates the state of the policy session 
against the set of predefined Policy Rules. The Policy Service 
assigns each cleanup operation a unique ID so that operations 
can be monitored and modified. If there is a duplicate cleanup 
request and the cleanup operation is in progress or completed, 
the Policy Service removes the current operation from the 
cleanup list. If the Policy Service receives a cleanup request for 
a file that is in use by other workflows, then it removes the 
cleanup operation from the list. The Policy Service returns the 
modified list of cleanup operations to the Pegasus cleanup 
process, which performs the cleanup operations.  

Once these file deletions are complete, the cleanup process 
sends the Policy Service the list of successful cleanups 
operations via HTTP using its RESTful Interface. The Policy 
Controller delegates the list of completed cleanups to the 
Policy Service, which removes state about the completed 
cleanups from Policy Memory. 

III. POLICY OVERVIEW 
Our current research focuses on three policy alternatives for 

staging and cleanup operations for workflows. Two (greedy 
and balanced) are focused on resource allocation, to manage 
the number of parallel streams between source and destination 

hosts. The third policy assigns priorities to data staging jobs 
based on the structure of the workflow. Although we explore a 
number of different algorithms, the experiments in this paper 
focus on the greedy algorithm described next. 

a) Greedy Allocation Algorithm 
The Greedy Allocation Algorithm enforces policies related 

to controlling the number of streams between a source and 
destination pair, with the goal of increasing the efficiency of 
data transfers. A site or Virtual Organization administrator 
provides as input to the Policy Service a threshold number of 
streams that should be allowed between a source and 
destination pair. When a new request comes in for a transfer 
between that source and destination, the policy engine checks 
its state regarding how many streams have already been 
allocated for ongoing transfers. If there are sufficient streams 
remaining below this threshold to satisfy the new request, then 
the requested number of streams is allocated to that transfer. 
However, if a new transfer will exceed the threshold set by the 
site or VO administrator, then the new transfer is allocated 
fewer streams (only one stream, if the threshold has been 
reached). The goal of the greedy algorithm is to allocate all 
transfers their requested number of streams up to the threshold 
value; additional transfers are allowed to proceed with a 
smaller number of streams to avoid starvation. As transfers 
complete and free up streams, those streams are allocated to 
new transfers (but currently not to ongoing transfers).  

b) Balanced Allocation Algorithm 
The Balanced Allocation Algorithm uses information about 

the Pegasus clustering factor to allocate streams between a 
source and destination host. The clustering factor is specified 
during workflow planning and indicates the maximum number 
of clustered jobs at the same horizontal level in the workflow. 
The goal of this policy is to ensure that each cluster receives a 
similar amount of bandwidth between a source and destination 
pair. Pegasus uses a clustering factor to group together data 
staging operations; for each cluster, at most one data transfer 
operation will be performed at a time, so the clustering factor is 
equivalent to the number of transfer operations that will be 
performed concurrently. Our Balanced Allocation policy 
attempts to balance the available bandwidth among the 
specified number of clusters. The cluster factor for the 
workflow is provided as an input to the Policy Service. When 
the Policy Service receives a transfer request from a particular 
cluster, it allocates the requested number of parallel streams 
until the cluster threshold is exceeded. Transfers initiated by a 
cluster that arrive after the cluster threshold is met are allocated 
a single stream. Thus, if one cluster's transfer requests arrive 
later than another cluster's, the later requests will not be 
starved, because available resources have been reserved for 
each cluster in a balanced allocation.  

c) Structure-Based Job Priorities 
Our workflows are structured as directed acyclic graphs. 

Thus, when staging data to the computations, it may be 
advantageous to consider the relationships among the workflow 
nodes when making data staging decisions. For example, it is 
more important to stage data to a root job before staging data to 



other jobs that depend on that root job.  Based on this, we can 
augment the workflow with priorities that indicate the relative 
importance of staging data to each workflow component.  

We can assign priorities to the workflow components based 
on various graph traversal algorithms: breadth-first search, 
depth-first search, and two graph node analysis algorithms 
called direct-dependent-based and dependent-based. The 
breadth- and depth-first search algorithms are standard graph 
traversal algorithms; they assign priorities based on the order of 
graph traversal, with higher priorities assigned to the nodes 
traversed earlier. The direct-dependent-based algorithm assigns 
the priorities based on the number of children a node has (the 
node’s fan-out), so the node with the largest number of children 
has the highest priority. The dependent-based algorithm assigns 
the highest priority to the node with the most total descendants 
(not just direct children). 

The Policy service can then use the priorities to determine 
the order of the transfers to be performed as well as the number 
of streams to allocate for particular data transfers.    

IV. POLICY RULES 
The Policy Service is implemented using the Drools open 

source policy engine [10].  Here, we describe the core policy 
rules that we developed in the current phase of the project.  

A. Policy rules that apply to all transfers 
When the Policy Engine receives a list of transfers from the 

Pegasus Transfer Tool for evaluation, it applies the policies 
shown in Table I to each transfer.  

TABLE I.  POLICIES THAT APPLY TO ALL TRANSFERS 

Policies Enforced for All Transfers 
Insert new transfers into policy memory 
Remove duplicate transfers from the transfer list 
Remove transfers from the transfer list that are already in 
progress 
Create a resource for a new transfer to track the resulting 
staged file 
Associate a transfer with a resource to track the number of 
workflows using the staged file 
Generate a unique group ID for a source and destination 
host pair 
Assign the group ID to a transfer based on its source and 
destination host pair 
Detach a transfer from the resource when it requests to 
cleanup the resource’s staged file 
Remove cleanups from the cleanup list that specify 
resources that have other transfers using the staged files 
Insert new cleanups into policy memory for resources that 
no longer have transfers using their staged files 
Assign a default level of parallel streams to a transfer 
Remove a transfer that has completed 
Remove a transfer that has failed 
Ensure each transfer has at least one parallel stream 
assigned 
Sort the list of transfers by the source and destination URLs 

B. Greedy Allocation Rules 
The following describes the policy rules that allow a limited 

number of parallel streams to be assigned between a source and 
destination host pair using a greedy allocation algorithm, where 
transfers are allocated their requested number of parallel 
streams until the threshold is exceeded. Transfers that are 
initiated after this threshold is reached are allocated a single 
stream.  

TABLE II.  GREEDY ALGORITHM POLICIES 

Policy Rules for Greedy Algorithm 
Retrieve the parallel streams threshold defined between a 
source and destination host 
Enforce the maximum number of parallel streams on a 
transfer 
If the number of requested streams would exceed the 
maximum streams threshold, then allocate only the number 
of streams that does not exceed the threshold 
If the threshold has been reached or exceeded, allocate one 
stream for the new transfer 
Record the number of parallel streams used by a transfer 
against the defined threshold 

 

C. Balanced Allocation Algorithm Rules  
The following describes the policy rules that allow a limited 

number of parallel streams to be assigned between a source and 
destination host pair using equal allocation among all clusters 
that run in parallel, where each cluster is allowed an equal 
share of the total streams between the hosts.  Transfers on the 
cluster are allocated their requested number of parallel streams 
until the cluster threshold is exceeded. Transfer requests that 
arrive later from other clusters are therefore not starved 
because available resources have already been reserved for use 
by each cluster. 

TABLE III.  BALANCED ALLOCATION ALGORITHM POLICIES 

Policy Rules for Balanced Algorithm 
Retrieve the parallel streams threshold defined for a single 
cluster between a source and destination host 
Retrieve the number of clusters used in the system 
Enforce the max number of parallel streams on a transfer 
that violates the number of available streams below the 
threshold on its cluster 
Record the number of parallel streams used by a transfer 
against the defined cluster threshold 

 
The implementation of rules related to the structure-based 

job priorities is left for future work.  

V. THE EFFECT OF POLICIES ON WORKFLOW PERFORMANCE 
Next, we present our evaluation of the greedy allocation 

policy on the performance of the Montage astronomy workflow 
[11, 12]. Montage is an astronomy application that is used to 
construct large image mosaics of the sky, and it is widely used 
as a workflow benchmark. The input files are images re-



projected onto a sphere, and overlap is calculated for each input 
image. The application re-projects input images to the correct 
orientation while keeping background emission level constant 
in all images. The images are then added by rectifying them 
into a common flux scale and background level. Finally, the re-
projected images are co-added into a final mosaic.  

Our early experiments showed that the data staging time of 
the Montage workflow was a relatively small proportion of the 
total workflow execution time compared to computational 
time. To better explore the impact of policies on a data-
intensive application, we augmented the Montage 1 degree 
square workflow to stage one additional data file for each data 
staging job, as illustrated in Fig. 3. This scenario is 
representative of emerging big data applications that will stage 
increasing amounts of data for analysis. The sizes of these 
additional data files are 10 MBytes, 100 MBytes, 500 MBytes 
and 1 GByte in our experiments. There are 89 data staging jobs 
in this Montage workflow.  

 
Fig. 3. Illustrates the augmented workflow with an additional file per data 

staging job. 

The experiments were performed using a one-degree square 
Montage workflow on 9 nodes of the Obelix cluster at the USC 
Information Sciences Institute. The Obelix cluster nodes are 
Intel Xeon 6-core 2.67 GHz processors with 40 GBytes of 
RAM. The cluster uses NFS on its 1 GBit local area network.  

Montage input image files were stored on the Obelix cluster 
and staged in via an Apache web server for processing on 
cluster compute nodes. Pegasus was configured to use no 
clustering (one stage-in job per compute job), a local job limit 
of 20 (so that at most 20 data staging jobs will be released at 
once), cleanup enabled, and five retries on failure per job. 

The Policy Service ran as a RESTful web service on an 
Apache Tomcat server inside the Information Sciences Institute 
network.  Prior to each test, the policy service was configured 
to use a specified default number of streams per transfer and a 
maximum number of allowable streams between two hosts. In 
the tests where policy was enabled, Pegasus registered its 
transfer with the policy service and received advice on the 
number of streams to use in the transfer.  

Having Pegasus call out to an external service to make data 
placement decisions is potentially beneficial to the performance 
of workflow tasks, but this approach incurs overheads for the 

service calls, which include the time the policy engine takes to 
make its decisions.  

As described earlier, in addition to the input image files that 
were used in the Montage computation jobs, our executable 
workflows were modified to include an additional input file per 
stage-in job. These large additional files were staged over the 
wide area network from a FutureGrid site at the Texas 
Advanced Computing Center to the NFS mounted drive for 
Obelix. This data staging is illustrated in Fig. 4. A GridFTP 
version 6.5 server runs on a Virtual Machine in the FutureGrid 
Alamo cloud at the Texas Advanced Computing Center and 
stages data to our computations. Bandwidth for large transfers 
between the FutureGrid VM and ISI was about 28 MBits/sec.  

 
Fig. 4. Illustrates staging of additional data files from FutureGrid cloud. 

In our experiments, we plot the workflow execution time 
versus a varying number of default streams per transfer. In Fig. 
5, we fix the threshold at 50 streams for the greedy algorithm 
and vary the size of the additional files being staged with the 
Montage workflow. For the other graphs, we fix the size of the 
files being staged and vary the threshold of streams allocated 
by the greedy algorithm. We ran each experiment at least 5 
times. The graphs show average values with error bars showing 
standard deviation.  

TABLE IV.  MAXIMUM STREAMS FOR SIMULTANEOUS TRANSFERS 

Default streams per transfer   
Greedy streams 
threshold 4 6 8 10 12 
No policy case 80      
50 57 61 63 65 65 
100 80 103 107 110 111 
200 80 120 160 200 203 

 



 
Fig. 5. Shows the effect on workflow execution time of increasing the file size of the additional staged data for 50 stream threshold and increasing number of 

default streams per transfer. 
 
Table IV shows the maximum streams that will be allocated 

for specified values for default streams per transfer and 
threshold for the greedy algorithm. In the no policy case, with 
up to 20 data staging jobs running and each using a default of 4 
streams, at most 80 simultaneous streams will be active for data 
transfers. With a greedy threshold of 50 streams and a default 
allocation of 8 streams, the first 6 staging jobs will receive an 
allocation of 8 streams (for a total of 48 streams); the next job 
will receive 2 streams (reaching the threshold of 50 streams); 
and the remaining 13 data staging jobs will receive 1 stream, 
for a total of 63 allocated streams. We will refer to Table IV to 
provide insights into the performance results that follow.  

Fig. 5 shows the effect of increasing the size of the 
additional files staged with the Montage workflow with a 
threshold value of 50 streams for the greedy algorithm. The file 
sizes range from 0 (no additional data staged) to 1 GByte 
additional data transferred per data staging job. This is in 
contrast to the average size of 2 MBytes for stage-in files for 
the most data-intensive Montage job (mProjectPP); the runtime 
for these jobs is several seconds. The graph shows the 
workflow execution time as a function of the default streams 
per transfer. The additional file size has a significant effect on 
workflow execution time for file sizes over 100 Megabytes. By 
contrast, increasing the default number of streams per transfer 
has relatively little impact on performance.  

Next, we show the impact of fixing the size of the 
additional data staging files and increasing the maximum 
number of streams used in our experiments from 50 to 200.  
We compare the performance of the greedy algorithm with the 
default performance for Pegasus without any policy applied.  

Fig. 6 shows that when the additional data files staged with 
the Montage workflow are relatively small (10 Megabytes), 
there is not much difference in the behavior as the number of 
maximum streams increases. The use of the policy engine 
performs slightly better (at most 6%) than default Pegasus with 
no policy (shown as a single data point with a blue circle at 4 
streams per transfer) at lower values for default streams per 

transfer. We note that the greedy policy with a threshold of 50 
maximum streams has the best performance of the three 
threshold values. According to Table IV, this policy allocates a 
maximum of 57 to 65 total streams, compared to up to 111 
streams for the 100 greedy policy and up to 203 streams 
allocated for the 200 greedy policy. We conclude that limiting 
the number of allocated streams can result in better 
performance between source and destination sites by avoiding 
overwhelming host resources at the source and destination and 
the network resources between them.     

Similarly, Fig. 7 shows workflow performance when the 
size of additional files transferred is 100 MBytes per data 
staging job. This graph shows a more significant difference in 
performance for the three threshold values for the greedy 
algorithm. The best performance is achieved with 50 maximum 
streams, which outperforms default Pegasus with no policy by 
6.7% at 8 streams per transfer. The performance with a 
threshold of 200 is 28.8% worse than for a threshold of 50 with 
8 streams per transfer. This suggests that the greedy algorithm 
can over-allocate the number of streams between the source 
and destination, resulting in worse performance. A threshold 
value of 50 works best for this environment and transfer size.  

Fig. 8 shows performance when the file size for extra 
staged data increases to 500 MBytes per data staging job. For 
the large files in these experiments, a threshold value of 50 
streams performs best, with a threshold of 100 streams also 
providing good performance. Both threshold values perform 
significantly better than default Pegasus using no policy. For 
example, the threshold of 50 with 8 streams per transfer 
performs 14% faster than default Pegasus. A threshold value of 
200 performs well for low values for streams per transfer, but 
performs poorly for larger values. Based on Table IV, we 
speculate that overall performance of the workflow declines 
because these relatively long-running, 500 megabyte transfers 
overwhelm the available resources when the maximum number 
of allocated steams reaches 160 for 8 streams per transfer and 
203 for 12 streams per transfer.    

 



 
Fig. 6. Workflow Performance with staging of additional 10 MByte files. The blue circle indicates the single point for the nopolicy case, 

where default Pegasus runs with 4 streams per transfer. 

 

 
Fig. 7. Workflow Performance with staging of additional 100 MByte files. 

 
Fig. 8. Workflow performance of staging additional 500 MByte files. 

 



 
Fig. 9. Workflow performance with additional data staging with 1 GByte files. 

 
Finally, Fig. 9 shows the performance when the file size 

for additional staging is 1 GByte per data staging job. For 
these experiments, there is no clear advantage to using any of 
the greedy threshold values over the default Pegasus 
performance. Based on our earlier experiments, we speculate 
that these large, long-running data transfers make use of all 
available resources between the source and destination 
regardless of the policy used.  

We plan to run further experiments in higher-
performance environments to study the effect of policies on 
resource allocation. We will also explore machine learning 
algorithms to identify the data transfer settings (such as the 
threshold number of streams) that are the most beneficial for 
applications; we speculate that these will depend on available 
host resources and on network performance between 
computing and data storage sites. 

VI. RELATED WORK 

A. Data Management and Placement for Scientific 
Applications 
In earlier work, we measured the impact of data pre-

staging on Pegasus [13] workflows. We prestaged input data 
sets near expected computation sites for the Montage 
workflow and measured the performance improvement when 
the workflow accessed prestaged data. We categorized 
placement operations and explored the ability of workflow 
systems to provide hints regarding where to place data.  

We also examined data management for workflows 
executing in storage constrained environments [14, 15]. We 
showed that the overall data footprint for a workflow can be 
reduced by removing files that are no longer required by the 
workflow during the remaining execution (i.e., clean-up 
operations) [14]. We also presented an algorithm that finds 
feasible solutions for task assignment in storage constrained 
environments [15].  

Ranganathan et. al [16] design and provide simulation 
results for a scheduling framework for grid environments 

that supports combinations of job scheduling and data 
replication algorithms. They achieve the best performance by 
scheduling jobs where data are located and replicating 
popular data sets at each site, a scheme that decouples data 
and computational scheduling.  

Stork, developed by Kosar et al. [17, 18], is a data 
placement scheduler that schedules, monitors and manages 
data placement jobs with fault tolerance. This group also 
proposed a data-intensive scheduling paradigm [19] that 
schedules data placement jobs independently of compute 
jobs in scientific workflows; these different job types are 
managed by Stork and the DAGMan directed acyclic graph 
manager [20], respectively. After DAGMan receives an 
executable workflow from Pegasus, it divides the workflow 
execution between Condor and Stork, with Stork handling all 
data placement jobs. In our approach, the Pegasus Transfer 
Tool still performance data placement and staging tasks, but 
it first consults the Policy Service to get advice on the 
ordering of requests and desirable transfer parameters for 
requests.  

Yuan et al. [21] propose a matrix based k-means 
clustering strategy for data placement in scientific 
workflows. They assume that datasets are located in different 
data centers, while we assume a single data storage resource. 
They use two strategies that group the existing datasets into k 
data centers and dynamically cluster newly generated 
datasets to their optimal destinations based on dependencies 
during runtime. In our approach, the Policy Service groups 
together requests with the same source and destination hosts 
and orders requests based on algorithms for resource 
allocation or task priorities.  

B. Policies for Scientific Data Management 
In earlier work, we developed initial prototype policy 

services and evaluated the impact of simple policies on 
workflow performance [22-25]. Our current policy 
architecture and implementation are scalable and robust and 



support a broader range of policies, including those evaluated 
here that control resource allocation for data transfers.  

Other large scientific collaborations have developed 
complex systems for management of data distribution and 
replication, including the Physics Experiment Data Export 
(PheDEx) [26, 27] system for high-energy physics and the 
Lightweight Data Replicator (LDR) [28] for gravitational-
wave physics. In each collaboration, the Virtual Organization 
has defined policies for distribution and replication of data 
sets to provide high availability and make datasets available 
to scientists at their institutions or near where computations 
are likely to run. Wasson et al. [29] examine policies for 
sharing resources among the resources and users of a VO, 
either by giving all participants an equal share or based on 
the contribution of resources by each participant. 
MyPolyMan by Feng et al. [30] makes permit/denial 
decisions regarding data movement operations. 

The integrated Rule-Oriented Data System (iRODS) [31] 
uses a rule based system to implement data management 
constraints. The iRODS system extends the Storage 
Resource Broker (SRB) [32]. iRODS uses a modular 
architecture to apply and monitor policies for digital 
curation. The rule engine evaluates which rule sets are to be 
enforced and activates the corresponding micro services. 
iRODS enforces a wide range of policies related to 
replication, data consistency, provenance and metadata 
management. By contrast, our Policy Service limits itself to 
giving runtime advice on transfer order and transfer 
parameters.  

VII. SUMMARY 
As scientific data continue to be generated and consumed 

at ever-increasing rates, the performance of data staging will 
have an increasing impact on the overall performance of 
scientific workflows. The goal of our work is to improve the 
overall performance of scientific workflows by using policy 
to improve the performance of data staging into and out of 
computational resources. In this paper, we describe the 
integration of a policy service with the Pegasus Workflow  
Management System and describe a range of policies that we 
are exploring to improve workflow performance. We 
implement and evaluate a greedy allocation algorithm that 
enforces controls the number of streams allocated between a 
source and destination pair, with the goal of increasing the 
efficiency of data transfers. Our evaluation increases the 
amount of data staging for the Montage astronomy workflow 
by staging an additional data file for each data staging job in 
the workflow.  

Our experiments show that there are significant 
performance benefits to controlling the allocation of streams 
between source and destination hosts as the amount of data 
transfer increases, up to the point where the available 
resources are fully utilized.  

In our future work, we plan to do much more extensive 
performance evaluation of the greedy allocation policy as 
well as the balanced allocation and the workflow structure-
based approaches that we have described. Our goal is to 

identify a set of policies that will be advantageous to big data 
scientific workflows. We also plan to explore machine 
learning algorithms to help us learn what data transfer 
settings (such as the threshold number of streams) are the 
most beneficial for the applications. Based on our current 
results, we assume that these will depend on available host 
resources and on the network performance between 
computing and data storage sites. Finally, we will study the 
scalability of the centralized policy service when planning 
multiple complex workflows and explore strategies for 
distribution and replication of policy logic to improve 
reliability. 
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