
Integrating Policy with Scientific Workflow
Management for Data-Intensive Applications

Ann L. Chervenak, David E. Smith, Weiwei Chen, Ewa Deelman
Information Sciences Institute

University of Southern California
Marina del Rey, CA, USA

{annc, smithd, wchen, deelman}@isi.edu

Abstract—As scientific applications generate and consume data
at ever-increasing rates, scientific workflow systems that manage
the growing complexity of analyses and data movement will
increase in importance. The goal of our work is to improve the
overall performance of scientific workflows by using policy to
improve data staging into and out of computational resources.
We developed a Policy Service that gives advice to the workflow
system about how to stage data, including advice on the order of
data transfers and on transfer parameters. The Policy Service
gives this advice based on its knowledge of ongoing transfers,
recent transfer performance, and the current allocation of
resources for data staging. The paper describes the architecture
of the Policy Service and its integration with the Pegasus
Workflow Management System. It employs a range of policies for
data staging, and presents performance results for one policy that
does a greedy allocation of data transfer streams between source
and destination sites. The results show performance
improvements for a data-intensive workflow: the Montage
astronomy workflow augmented to perform additional large data
staging operations.

Index Terms—data placement, scientific workflow, policy
service, greedy allocation policy.

I. INTRODUCTION
Scientific applications in a number of domains are

generating and consuming data at increasing rates. As a result,
the analyses needed to process these data are becoming ever
more complex, and they are often built out of individual
application components. These components often must execute
in a specific order, based on data or control dependencies
among the components. The trend of ever increasing data sizes
and of growing analysis complexity is expected to continue and
to pose ever greater scalability challenges on the application
and on resource management systems [1].

Scientific workflows are a way of managing these complex
scientific analyses [2, 3]. Workflows allow scientists to
declaratively describe their application’s components and the
application inputs and outputs. Often, the data in the workflows
are represented in files. Due to the large data sizes and the
complexity of the computations, these workflows need to be
executed on remote, potentially distributed resources such as
campus clusters, grids, and clouds. The data sets may be
distributed over the wide area network as well. Thus, workflow

management systems need to be able to orchestrate the
execution of the computations on the available resources, and
they also need to manage the staging of data in and out of
computational resources. Since storage, especially at
computational sites, is finite, the workflow management system
also needs to remove data that are no longer needed for
upcoming computations.

The goal of our work is to improve the overall performance
of scientific workflows by using policy to improve the
performance of data staging into and out of computational
resources. Our approach is to off-load data staging policy
decisions from the workflow management system to a Policy
Service, which is aware of ongoing transfers, recent data
transfer performance, and the current allocation of storage and
network resources for data staging. The policy engine then
balances the data movement within a workflow and across
multiple concurrently executing workflows.

The contributions of this paper are:
• An architecture and implementation of a general policy

service that can be tailored to specific purposes, such
as workflow management in this paper or to adaptive
data transfer [4].

• The integration of the policy service with a workflow
system: the Pegasus Workflow Management System
[5].

• A set of data staging policies that can be applied within
the service and the implementation of two of them in
policy rules.

• Initial performance results for one data staging policy
based on greedy allocation of streams to data transfers
between source and destination sites.

Our evaluation shows that by managing stream allocations,
we can significantly improve the performance of an astronomy
workflow (Montage) that is augmented to perform additional
large data staging operations, a scenario that is reflective of
emerging big data applications [6-8].

II. POLICY ENGINE
Fig. 1 shows the architecture of our Policy Service, which

provides advice to Pegasus about data staging and cleanup
operations performed as part of the workflow execution while
taking into account the entire data staging environment. The

Policy Service removes duplicate staging and cleanup requests,
allows multiple workflows to share staged files safely, defines
the default number of parallel streams to use for each transfer,
and enforces a maximum number of parallel streams to be
allocated between a source and destination host.

A. Architecture Overview
As shown in Fig. 1 our Policy Service architecture consists

of the following components. An Apache Tomcat Container
manages the runtime environment of the Policy Service
components. A RESTful Web Interface allows access to the
policy service over the web using XML or JSON data
structures. A Policy Controller manages communication
between the web interface and the policy engine. The Policy
Service or policy engine manages policy sessions that contain
Policy Rules and persistent Policy Memory. Policy rules
specify the required behavior for data staging and cleanup
operations in the system; these rules are separated from
application logic so that they can be customized to fit the
requirements of the deployed environment. Finally, Policy
Memory retains the current knowledge stored in the policy
engine; its state persists for the length of transfer and cleanup
requests.

B. Integration of Policy Engine with Pegasus Workflow
Management System
The Policy Engine applies specified policy rules to data

transfer operations of a Pegasus workflow. Next, we describe
how our Policy Engine is integrated with Pegasus for data
staging and cleanup operations.

1) Data Staging Requests

During its planning phase, Pegasus adds to the workflow
data staging tasks that move input data sets to resources where
compute jobs will execute, that transfer intermediate results

from one compute resource to another, and that transfer results
to permanent storage.

Pegasus stages all required data input files for each
compute job before releasing the job for execution. If Pegasus
is configured to use task clustering (combining multiple
workflow tasks into a single executable job) [9], then the data
staging operations are grouped together, with the number of
groups of transfers set by the clustering factor; clustering
groups multiple transfers together for greater transfer
efficiency. Fig. 2 illustrates data clustering with two data
transfer tasks. In the non-clustering case, there is initialization
overhead between transfer jobs. Grouping multiple transfers
together can improve transfer efficiency by eliminating these
overheads. Each cluster transfers or stages its files by initiating
data transfers serially using the Pegasus Transfer Tool (PTT),
which initiates data transfers using GridFTP, HTTP, or other
transfer protocols.

We integrated the Policy Service with the Pegasus
Workflow Management system via the Pegasus Transfer Tool.
We modified the PTT so that when it receives a list of transfers
to perform, it first sends this list of transfer requests to the
Policy Engine, which applies policies to the pending transfers.
Based on these policies, the Policy Service can assign priorities
to the transfers, group the transfers based on specified criteria,
and offer advice on appropriate transfer parameters.

The PTT sends transfer requests to the Policy Controller via
HTTP using its RESTful Web Interface. The Policy Controller
delegates this list of transfers to the Policy Service. The Policy
Service then adds the list of transfers to the Policy Memory and
evaluates the state of the policy session against the set of
predefined Policy Rules. After these rules have been enforced,
the Policy Service constructs a modified list of transfers and
sends the list back to the Pegasus Transfer Tool through the
Policy Controller and RESTful Web Interface. The Policy
Service assigns each transfer a unique ID so that the transfers
can be monitored and modified.

Modifications to the transfer list by the Policy Service may
include removing duplicate transfers, grouping transfers for
greater efficiency, and modifying transfer parameters. Based on
the state that it maintains about pending and completed
transfers, the Policy Service identifies duplicate transfer
requests that are in progress or have already been successfully
staged by the current workflow or by another workflow. The
Policy Service removes those duplicate transfers from the list
that is returned to the PTT for transfer execution.

Fig. 2. Illustration of clustering with 2 data jobs and 2 transfers performed at a

time.

Fig. 1. Overview of Policy Service Architecture.

The Policy Service can also group transfers together based
on specified policies. For example, we implemented policy
rules that sort the list of transfers by source and destination
URLs. The Policy Service then assigns a common Group ID to
transfers with the same source and destination URLs before
returning the list of transfers to the PTT, so that the transfer
client can perform these operations in a single session to
achieve greater transfer efficiency.

The Policy Service also gives advice on transfer
parameters, such as the desired number of parallel streams for
each transfer, to manage and optimize the throughput of
concurrent staging operations between source and destination
hosts. We use this capability in the greedy and balanced stream
allocation policies described in Section III.

Once it receives the modified list of transfers from the
Policy Engine, the Pegasus Transfer Tool processes all the
transfers in each group sequentially, using the sorted order and
transfer parameters specified by the Policy Engine.

After the Pegasus Transfer Tool completes the specified
data transfers, it sends a list of completed transfers to the Policy
Service. The detailed state about successfully completed
transfers is removed from the Policy Memory; however, the
Policy Service maintains information about the location of
staged files so that it can prevent subsequent staging operations
from restaging the same files.

2) Cleanup Requests

Workflows also include cleanup jobs that delete files (such
as intermediate results) that are no longer needed for workflow
execution. Each Pegasus cleanup process submits the list of
files that it is assigned to remove to the Policy Server via HTTP
using its RESTful Web Interface. As before, the Policy
Controller delegates this list of files to the Policy Service,
which adds the list of files to be deleted to the Policy Memory.
The Policy Service then evaluates the state of the policy session
against the set of predefined Policy Rules. The Policy Service
assigns each cleanup operation a unique ID so that operations
can be monitored and modified. If there is a duplicate cleanup
request and the cleanup operation is in progress or completed,
the Policy Service removes the current operation from the
cleanup list. If the Policy Service receives a cleanup request for
a file that is in use by other workflows, then it removes the
cleanup operation from the list. The Policy Service returns the
modified list of cleanup operations to the Pegasus cleanup
process, which performs the cleanup operations.

Once these file deletions are complete, the cleanup process
sends the Policy Service the list of successful cleanups
operations via HTTP using its RESTful Interface. The Policy
Controller delegates the list of completed cleanups to the
Policy Service, which removes state about the completed
cleanups from Policy Memory.

III. POLICY OVERVIEW
Our current research focuses on three policy alternatives for

staging and cleanup operations for workflows. Two (greedy
and balanced) are focused on resource allocation, to manage
the number of parallel streams between source and destination

hosts. The third policy assigns priorities to data staging jobs
based on the structure of the workflow. Although we explore a
number of different algorithms, the experiments in this paper
focus on the greedy algorithm described next.

a) Greedy Allocation Algorithm
The Greedy Allocation Algorithm enforces policies related

to controlling the number of streams between a source and
destination pair, with the goal of increasing the efficiency of
data transfers. A site or Virtual Organization administrator
provides as input to the Policy Service a threshold number of
streams that should be allowed between a source and
destination pair. When a new request comes in for a transfer
between that source and destination, the policy engine checks
its state regarding how many streams have already been
allocated for ongoing transfers. If there are sufficient streams
remaining below this threshold to satisfy the new request, then
the requested number of streams is allocated to that transfer.
However, if a new transfer will exceed the threshold set by the
site or VO administrator, then the new transfer is allocated
fewer streams (only one stream, if the threshold has been
reached). The goal of the greedy algorithm is to allocate all
transfers their requested number of streams up to the threshold
value; additional transfers are allowed to proceed with a
smaller number of streams to avoid starvation. As transfers
complete and free up streams, those streams are allocated to
new transfers (but currently not to ongoing transfers).

b) Balanced Allocation Algorithm
The Balanced Allocation Algorithm uses information about

the Pegasus clustering factor to allocate streams between a
source and destination host. The clustering factor is specified
during workflow planning and indicates the maximum number
of clustered jobs at the same horizontal level in the workflow.
The goal of this policy is to ensure that each cluster receives a
similar amount of bandwidth between a source and destination
pair. Pegasus uses a clustering factor to group together data
staging operations; for each cluster, at most one data transfer
operation will be performed at a time, so the clustering factor is
equivalent to the number of transfer operations that will be
performed concurrently. Our Balanced Allocation policy
attempts to balance the available bandwidth among the
specified number of clusters. The cluster factor for the
workflow is provided as an input to the Policy Service. When
the Policy Service receives a transfer request from a particular
cluster, it allocates the requested number of parallel streams
until the cluster threshold is exceeded. Transfers initiated by a
cluster that arrive after the cluster threshold is met are allocated
a single stream. Thus, if one cluster's transfer requests arrive
later than another cluster's, the later requests will not be
starved, because available resources have been reserved for
each cluster in a balanced allocation.

c) Structure-Based Job Priorities
Our workflows are structured as directed acyclic graphs.

Thus, when staging data to the computations, it may be
advantageous to consider the relationships among the workflow
nodes when making data staging decisions. For example, it is
more important to stage data to a root job before staging data to

other jobs that depend on that root job. Based on this, we can
augment the workflow with priorities that indicate the relative
importance of staging data to each workflow component.

We can assign priorities to the workflow components based
on various graph traversal algorithms: breadth-first search,
depth-first search, and two graph node analysis algorithms
called direct-dependent-based and dependent-based. The
breadth- and depth-first search algorithms are standard graph
traversal algorithms; they assign priorities based on the order of
graph traversal, with higher priorities assigned to the nodes
traversed earlier. The direct-dependent-based algorithm assigns
the priorities based on the number of children a node has (the
node’s fan-out), so the node with the largest number of children
has the highest priority. The dependent-based algorithm assigns
the highest priority to the node with the most total descendants
(not just direct children).

The Policy service can then use the priorities to determine
the order of the transfers to be performed as well as the number
of streams to allocate for particular data transfers.

IV. POLICY RULES
The Policy Service is implemented using the Drools open

source policy engine [10]. Here, we describe the core policy
rules that we developed in the current phase of the project.

A. Policy rules that apply to all transfers
When the Policy Engine receives a list of transfers from the

Pegasus Transfer Tool for evaluation, it applies the policies
shown in Table I to each transfer.

TABLE I. POLICIES THAT APPLY TO ALL TRANSFERS

Policies Enforced for All Transfers
Insert new transfers into policy memory
Remove duplicate transfers from the transfer list
Remove transfers from the transfer list that are already in
progress
Create a resource for a new transfer to track the resulting
staged file
Associate a transfer with a resource to track the number of
workflows using the staged file
Generate a unique group ID for a source and destination
host pair
Assign the group ID to a transfer based on its source and
destination host pair
Detach a transfer from the resource when it requests to
cleanup the resource’s staged file
Remove cleanups from the cleanup list that specify
resources that have other transfers using the staged files
Insert new cleanups into policy memory for resources that
no longer have transfers using their staged files
Assign a default level of parallel streams to a transfer
Remove a transfer that has completed
Remove a transfer that has failed
Ensure each transfer has at least one parallel stream
assigned
Sort the list of transfers by the source and destination URLs

B. Greedy Allocation Rules
The following describes the policy rules that allow a limited

number of parallel streams to be assigned between a source and
destination host pair using a greedy allocation algorithm, where
transfers are allocated their requested number of parallel
streams until the threshold is exceeded. Transfers that are
initiated after this threshold is reached are allocated a single
stream.

TABLE II. GREEDY ALGORITHM POLICIES

Policy Rules for Greedy Algorithm
Retrieve the parallel streams threshold defined between a
source and destination host
Enforce the maximum number of parallel streams on a
transfer
If the number of requested streams would exceed the
maximum streams threshold, then allocate only the number
of streams that does not exceed the threshold
If the threshold has been reached or exceeded, allocate one
stream for the new transfer
Record the number of parallel streams used by a transfer
against the defined threshold

C. Balanced Allocation Algorithm Rules
The following describes the policy rules that allow a limited

number of parallel streams to be assigned between a source and
destination host pair using equal allocation among all clusters
that run in parallel, where each cluster is allowed an equal
share of the total streams between the hosts. Transfers on the
cluster are allocated their requested number of parallel streams
until the cluster threshold is exceeded. Transfer requests that
arrive later from other clusters are therefore not starved
because available resources have already been reserved for use
by each cluster.

TABLE III. BALANCED ALLOCATION ALGORITHM POLICIES

Policy Rules for Balanced Algorithm
Retrieve the parallel streams threshold defined for a single
cluster between a source and destination host
Retrieve the number of clusters used in the system
Enforce the max number of parallel streams on a transfer
that violates the number of available streams below the
threshold on its cluster
Record the number of parallel streams used by a transfer
against the defined cluster threshold

The implementation of rules related to the structure-based

job priorities is left for future work.

V. THE EFFECT OF POLICIES ON WORKFLOW PERFORMANCE
Next, we present our evaluation of the greedy allocation

policy on the performance of the Montage astronomy workflow
[11, 12]. Montage is an astronomy application that is used to
construct large image mosaics of the sky, and it is widely used
as a workflow benchmark. The input files are images re-

projected onto a sphere, and overlap is calculated for each input
image. The application re-projects input images to the correct
orientation while keeping background emission level constant
in all images. The images are then added by rectifying them
into a common flux scale and background level. Finally, the re-
projected images are co-added into a final mosaic.

Our early experiments showed that the data staging time of
the Montage workflow was a relatively small proportion of the
total workflow execution time compared to computational
time. To better explore the impact of policies on a data-
intensive application, we augmented the Montage 1 degree
square workflow to stage one additional data file for each data
staging job, as illustrated in Fig. 3. This scenario is
representative of emerging big data applications that will stage
increasing amounts of data for analysis. The sizes of these
additional data files are 10 MBytes, 100 MBytes, 500 MBytes
and 1 GByte in our experiments. There are 89 data staging jobs
in this Montage workflow.

Fig. 3. Illustrates the augmented workflow with an additional file per data

staging job.

The experiments were performed using a one-degree square
Montage workflow on 9 nodes of the Obelix cluster at the USC
Information Sciences Institute. The Obelix cluster nodes are
Intel Xeon 6-core 2.67 GHz processors with 40 GBytes of
RAM. The cluster uses NFS on its 1 GBit local area network.

Montage input image files were stored on the Obelix cluster
and staged in via an Apache web server for processing on
cluster compute nodes. Pegasus was configured to use no
clustering (one stage-in job per compute job), a local job limit
of 20 (so that at most 20 data staging jobs will be released at
once), cleanup enabled, and five retries on failure per job.

The Policy Service ran as a RESTful web service on an
Apache Tomcat server inside the Information Sciences Institute
network. Prior to each test, the policy service was configured
to use a specified default number of streams per transfer and a
maximum number of allowable streams between two hosts. In
the tests where policy was enabled, Pegasus registered its
transfer with the policy service and received advice on the
number of streams to use in the transfer.

Having Pegasus call out to an external service to make data
placement decisions is potentially beneficial to the performance
of workflow tasks, but this approach incurs overheads for the

service calls, which include the time the policy engine takes to
make its decisions.

As described earlier, in addition to the input image files that
were used in the Montage computation jobs, our executable
workflows were modified to include an additional input file per
stage-in job. These large additional files were staged over the
wide area network from a FutureGrid site at the Texas
Advanced Computing Center to the NFS mounted drive for
Obelix. This data staging is illustrated in Fig. 4. A GridFTP
version 6.5 server runs on a Virtual Machine in the FutureGrid
Alamo cloud at the Texas Advanced Computing Center and
stages data to our computations. Bandwidth for large transfers
between the FutureGrid VM and ISI was about 28 MBits/sec.

Fig. 4. Illustrates staging of additional data files from FutureGrid cloud.

In our experiments, we plot the workflow execution time
versus a varying number of default streams per transfer. In Fig.
5, we fix the threshold at 50 streams for the greedy algorithm
and vary the size of the additional files being staged with the
Montage workflow. For the other graphs, we fix the size of the
files being staged and vary the threshold of streams allocated
by the greedy algorithm. We ran each experiment at least 5
times. The graphs show average values with error bars showing
standard deviation.

TABLE IV. MAXIMUM STREAMS FOR SIMULTANEOUS TRANSFERS

Default streams per transfer
Greedy streams
threshold 4 6 8 10 12
No policy case 80
50 57 61 63 65 65
100 80 103 107 110 111
200 80 120 160 200 203

Fig. 5. Shows the effect on workflow execution time of increasing the file size of the additional staged data for 50 stream threshold and increasing number of

default streams per transfer.

Table IV shows the maximum streams that will be allocated

for specified values for default streams per transfer and
threshold for the greedy algorithm. In the no policy case, with
up to 20 data staging jobs running and each using a default of 4
streams, at most 80 simultaneous streams will be active for data
transfers. With a greedy threshold of 50 streams and a default
allocation of 8 streams, the first 6 staging jobs will receive an
allocation of 8 streams (for a total of 48 streams); the next job
will receive 2 streams (reaching the threshold of 50 streams);
and the remaining 13 data staging jobs will receive 1 stream,
for a total of 63 allocated streams. We will refer to Table IV to
provide insights into the performance results that follow.

Fig. 5 shows the effect of increasing the size of the
additional files staged with the Montage workflow with a
threshold value of 50 streams for the greedy algorithm. The file
sizes range from 0 (no additional data staged) to 1 GByte
additional data transferred per data staging job. This is in
contrast to the average size of 2 MBytes for stage-in files for
the most data-intensive Montage job (mProjectPP); the runtime
for these jobs is several seconds. The graph shows the
workflow execution time as a function of the default streams
per transfer. The additional file size has a significant effect on
workflow execution time for file sizes over 100 Megabytes. By
contrast, increasing the default number of streams per transfer
has relatively little impact on performance.

Next, we show the impact of fixing the size of the
additional data staging files and increasing the maximum
number of streams used in our experiments from 50 to 200.
We compare the performance of the greedy algorithm with the
default performance for Pegasus without any policy applied.

Fig. 6 shows that when the additional data files staged with
the Montage workflow are relatively small (10 Megabytes),
there is not much difference in the behavior as the number of
maximum streams increases. The use of the policy engine
performs slightly better (at most 6%) than default Pegasus with
no policy (shown as a single data point with a blue circle at 4
streams per transfer) at lower values for default streams per

transfer. We note that the greedy policy with a threshold of 50
maximum streams has the best performance of the three
threshold values. According to Table IV, this policy allocates a
maximum of 57 to 65 total streams, compared to up to 111
streams for the 100 greedy policy and up to 203 streams
allocated for the 200 greedy policy. We conclude that limiting
the number of allocated streams can result in better
performance between source and destination sites by avoiding
overwhelming host resources at the source and destination and
the network resources between them.

Similarly, Fig. 7 shows workflow performance when the
size of additional files transferred is 100 MBytes per data
staging job. This graph shows a more significant difference in
performance for the three threshold values for the greedy
algorithm. The best performance is achieved with 50 maximum
streams, which outperforms default Pegasus with no policy by
6.7% at 8 streams per transfer. The performance with a
threshold of 200 is 28.8% worse than for a threshold of 50 with
8 streams per transfer. This suggests that the greedy algorithm
can over-allocate the number of streams between the source
and destination, resulting in worse performance. A threshold
value of 50 works best for this environment and transfer size.

Fig. 8 shows performance when the file size for extra
staged data increases to 500 MBytes per data staging job. For
the large files in these experiments, a threshold value of 50
streams performs best, with a threshold of 100 streams also
providing good performance. Both threshold values perform
significantly better than default Pegasus using no policy. For
example, the threshold of 50 with 8 streams per transfer
performs 14% faster than default Pegasus. A threshold value of
200 performs well for low values for streams per transfer, but
performs poorly for larger values. Based on Table IV, we
speculate that overall performance of the workflow declines
because these relatively long-running, 500 megabyte transfers
overwhelm the available resources when the maximum number
of allocated steams reaches 160 for 8 streams per transfer and
203 for 12 streams per transfer.

Fig. 6. Workflow Performance with staging of additional 10 MByte files. The blue circle indicates the single point for the nopolicy case,

where default Pegasus runs with 4 streams per transfer.

Fig. 7. Workflow Performance with staging of additional 100 MByte files.

Fig. 8. Workflow performance of staging additional 500 MByte files.

Fig. 9. Workflow performance with additional data staging with 1 GByte files.

Finally, Fig. 9 shows the performance when the file size

for additional staging is 1 GByte per data staging job. For
these experiments, there is no clear advantage to using any of
the greedy threshold values over the default Pegasus
performance. Based on our earlier experiments, we speculate
that these large, long-running data transfers make use of all
available resources between the source and destination
regardless of the policy used.

We plan to run further experiments in higher-
performance environments to study the effect of policies on
resource allocation. We will also explore machine learning
algorithms to identify the data transfer settings (such as the
threshold number of streams) that are the most beneficial for
applications; we speculate that these will depend on available
host resources and on network performance between
computing and data storage sites.

VI. RELATED WORK

A. Data Management and Placement for Scientific
Applications
In earlier work, we measured the impact of data pre-

staging on Pegasus [13] workflows. We prestaged input data
sets near expected computation sites for the Montage
workflow and measured the performance improvement when
the workflow accessed prestaged data. We categorized
placement operations and explored the ability of workflow
systems to provide hints regarding where to place data.

We also examined data management for workflows
executing in storage constrained environments [14, 15]. We
showed that the overall data footprint for a workflow can be
reduced by removing files that are no longer required by the
workflow during the remaining execution (i.e., clean-up
operations) [14]. We also presented an algorithm that finds
feasible solutions for task assignment in storage constrained
environments [15].

Ranganathan et. al [16] design and provide simulation
results for a scheduling framework for grid environments

that supports combinations of job scheduling and data
replication algorithms. They achieve the best performance by
scheduling jobs where data are located and replicating
popular data sets at each site, a scheme that decouples data
and computational scheduling.

Stork, developed by Kosar et al. [17, 18], is a data
placement scheduler that schedules, monitors and manages
data placement jobs with fault tolerance. This group also
proposed a data-intensive scheduling paradigm [19] that
schedules data placement jobs independently of compute
jobs in scientific workflows; these different job types are
managed by Stork and the DAGMan directed acyclic graph
manager [20], respectively. After DAGMan receives an
executable workflow from Pegasus, it divides the workflow
execution between Condor and Stork, with Stork handling all
data placement jobs. In our approach, the Pegasus Transfer
Tool still performance data placement and staging tasks, but
it first consults the Policy Service to get advice on the
ordering of requests and desirable transfer parameters for
requests.

Yuan et al. [21] propose a matrix based k-means
clustering strategy for data placement in scientific
workflows. They assume that datasets are located in different
data centers, while we assume a single data storage resource.
They use two strategies that group the existing datasets into k
data centers and dynamically cluster newly generated
datasets to their optimal destinations based on dependencies
during runtime. In our approach, the Policy Service groups
together requests with the same source and destination hosts
and orders requests based on algorithms for resource
allocation or task priorities.

B. Policies for Scientific Data Management
In earlier work, we developed initial prototype policy

services and evaluated the impact of simple policies on
workflow performance [22-25]. Our current policy
architecture and implementation are scalable and robust and

support a broader range of policies, including those evaluated
here that control resource allocation for data transfers.

Other large scientific collaborations have developed
complex systems for management of data distribution and
replication, including the Physics Experiment Data Export
(PheDEx) [26, 27] system for high-energy physics and the
Lightweight Data Replicator (LDR) [28] for gravitational-
wave physics. In each collaboration, the Virtual Organization
has defined policies for distribution and replication of data
sets to provide high availability and make datasets available
to scientists at their institutions or near where computations
are likely to run. Wasson et al. [29] examine policies for
sharing resources among the resources and users of a VO,
either by giving all participants an equal share or based on
the contribution of resources by each participant.
MyPolyMan by Feng et al. [30] makes permit/denial
decisions regarding data movement operations.

The integrated Rule-Oriented Data System (iRODS) [31]
uses a rule based system to implement data management
constraints. The iRODS system extends the Storage
Resource Broker (SRB) [32]. iRODS uses a modular
architecture to apply and monitor policies for digital
curation. The rule engine evaluates which rule sets are to be
enforced and activates the corresponding micro services.
iRODS enforces a wide range of policies related to
replication, data consistency, provenance and metadata
management. By contrast, our Policy Service limits itself to
giving runtime advice on transfer order and transfer
parameters.

VII. SUMMARY
As scientific data continue to be generated and consumed

at ever-increasing rates, the performance of data staging will
have an increasing impact on the overall performance of
scientific workflows. The goal of our work is to improve the
overall performance of scientific workflows by using policy
to improve the performance of data staging into and out of
computational resources. In this paper, we describe the
integration of a policy service with the Pegasus Workflow
Management System and describe a range of policies that we
are exploring to improve workflow performance. We
implement and evaluate a greedy allocation algorithm that
enforces controls the number of streams allocated between a
source and destination pair, with the goal of increasing the
efficiency of data transfers. Our evaluation increases the
amount of data staging for the Montage astronomy workflow
by staging an additional data file for each data staging job in
the workflow.

Our experiments show that there are significant
performance benefits to controlling the allocation of streams
between source and destination hosts as the amount of data
transfer increases, up to the point where the available
resources are fully utilized.

In our future work, we plan to do much more extensive
performance evaluation of the greedy allocation policy as
well as the balanced allocation and the workflow structure-
based approaches that we have described. Our goal is to

identify a set of policies that will be advantageous to big data
scientific workflows. We also plan to explore machine
learning algorithms to help us learn what data transfer
settings (such as the threshold number of streams) are the
most beneficial for the applications. Based on our current
results, we assume that these will depend on available host
resources and on the network performance between
computing and data storage sites. Finally, we will study the
scalability of the centralized policy service when planning
multiple complex workflows and explore strategies for
distribution and replication of policy logic to improve
reliability.

ACKNOWLEDGMENT
This work was supported by NFS under grant number IIS-
0905032 and used the FutureGrid environment, which was
supported by NSF grant number 0910812. Craig Ward
contributed to the implementation of the Policy Service.

REFERENCES
[1] A. J. G. Hey, S. Tansley, and K. M. Tolle, The fourth
paradigm: data-intensive scientific discovery: Microsoft Research
Redmond, WA, 2009.
[2] I. Taylor, E. Deelman, D. Gannon, and M. Shields,
"Workflows in e-Science," Springer, 2006.
[3] E. Deelman, D. Gannon, M. Shields, and I. Taylor,
"Workflows and e-Science: An overview of workflow system
features and capabilities," Future Generation Computer Systems,
vol. 25, pp. 528-540, 2009.
[4] J. Gu, D. Smith, A. L. Chervenak, and A. Sim, "Adaptive
Data Transfers that Utilize Policies for Resource Sharing," in 2nd
Int'l Workshop on Network Aware Data Management, in
conjunction with SC12 Conference Salt Lake City, UT, 2012.
[5] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C.
Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity,
J. C. Jacob, and D. S. Katz, "Pegasus: a Framework for Mapping
Complex Scientific Workflows onto Distributed Systems,"
Scientific Programming Journal, vol. 13, pp. 219-237, 2005.
[6] D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick,
W. Hide, D. P. Hill, R. Kania, M. Schaeffer, and S. St Pierre, "Big
data: The future of biocuration," Nature, vol. 455, pp. 47-50, 2008.
[7] F. Frankel and R. Reid, "Big data: distilling meaning
from data," Nature, vol. 455, pp. 30-30, 2008.
[8] "NSF Leads Federal Efforts In Big Data," National
Science Foundation,
http://www.nsf.gov/news/news_summ.jsp?cntn_id=123607.
[9] G. Singh, M. H. Su, K. Vahi, E. Deelman, B. Berriman,
J. Good, D. S. Katz, and G. Mehta, "Workflow task clustering for
best effort systems with Pegasus," in Mardi Gras Conference,
Baton Rouge, LA, 2008, p. 9.
[10] Drools project, "Drools, http://www.jboss.org/drools/."
[11] G. B. Berriman, et al., "Montage: A Grid Enabled Engine
for Delivering Custom Science-Grade Mosaics On Demand," in
SPIE Conference 5487: Astronomical Telescopes, 2004.
[12] G. B. Berriman, et al. , "Montage: A Grid-Enabled Image
Mosaic Service for the NVO," in Astronomical Data Analysis
Software & Systems (ADASS) XIII, 2003.
[13] A. L. Chervenak, E. Deelman, M. Livny, S. Mei-Hui, R.
Schuler, S. Bharathi, G. Mehta, and K. Vahi, "Data placement for

scientific applications in distributed environments," in Grid
Computing, 2007 8th IEEE/ACM International Conference on,
2007, pp. 267-274.
[14] G. Singh, K. Vahi, A. Ramakrishnan, G. Mehta, E.
Deelman, H. Zhao, R. Sakellariou, K. Blackburn, D. Brown, S.
Fairhurst, D. Meyers, G. B. Berriman, J. Good, and D. S. Katz,
"Optimizing workflow data footprint," Sci. Program., vol. 15, pp.
249-268, 2007.
[15] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R.
Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and M. Samidi,
"Scheduling data-intensive workflows onto storage-constrained
distributed resources," in proceedings of the 7th IEEE Symposium
on Cluster Computing and The Grid (CCGrid), 2007.
[16] K. Ranganathan and I. Foster, "Decoupling computation
and data scheduling in distributed data-intensive applications," in
High Performance Distributed Computing, 2002. HPDC-11 2002.
Proceedings. 11th IEEE International Symposium on, 2002, pp.
352-358 1082-8907.
[17] T. Kosar and M. Livny, "A framework for reliable and
efficient data placement in distributed computing systems," J. of
Parallel and Distributed Computing, vol. 65, pp. 1146-1157, 2005.
[18] T. Kosar and M. Livny, "Stork: making data placement a
first class citizen in the grid," in 24th International Conference on
Distributed Computing Systems, 2004, pp. 342-349.
[19] T. Kosar and M. Balman, "A new paradigm: Data-aware
scheduling in grid computing," Future Generation Computer
Systems, vol. 25, pp. 406-413, April 2009 2009.
[20] J. Frey, "Condor DAGMan: Handling Inter-Job
Dependencies," http://www.bo.infn.it/calcolo/condor/dagman/
[21] D. Yuan, Y. Yang, X. Liu, and J. Chen, "A data
placement strategy in scientific cloud workflows," Future
Generation Computer Systems, vol. 26, pp. 1200-1214, 2010.
[22] M. A. Amer, W. Chen, S. Hopkins, E. Griffiths, A.
Chervenak, and E. Deelman, "Separating Workflow Management
and Data Staging to Improve the Performance of Scientific
Workflows (student poster paper)," in International Conference for
High Performance Computing, Networking, Storage and Analysis
(SC'10 Conference) New Orleans, LA, 2010.
[23] M. A. Amer, A. Chervenak, and S. Alspaugh, "A Policy
Based Data Placement Service (student poster paper)," in

International Conference for High Performance Computing,
Networking, Storage and Analysis (SC'09 Conference), Portland,
OR, 2009.
[24] S. Alspaugh, A. Chervenak, and E. Deelman, "Policy-
Driven Data Management for Distributed Scientific Collaborations
using a Rule Engine (student poster paper)," in International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC'08 Conference), Austin, TX, USA, 2008.
[25] M. Amer, W. Chen, and A. L. Chervenak, "Improving
Scientific Workflow Performance using Policy Based Data
Placement," in IEEE International Symposium on Policies for
Distributed Systems and Networks (POLICY 2012), Chapel Hill,
North Carolina USA, 2012.
[26] T. A. Barrass, et al., "Software Agents in Data and
Workflow Management," in Computing in High Energy and
Nuclear Physics (CHEP) 2004, Interlaken, Switzerland, 2004.
[27] J. Rehn, T. Barrass, D. Bonacorsi, J. Hernandez, I.
Semeniouk, L. Tuura, and Y. Wu, "PhEDEx high-throughput data
transfer management system," in Computing in High Energy and
Nuclear Physics (CHEP) 2006, Mumbai, India, 2006.
[28] LIGO Project, "Lightweight Data Replicator,
http://www.lsc-group.phys.uwm.edu/LDR/," 2004.
[29] G. Wasson and M. Humphrey, "Toward explicit policy
management for virtual organizations," in IEEE Workshop on
Policies for Distributed Systems and Networks (POLICY‚'03),
2003.
[30] J. Feng, L. Cui, G. Wasson, and M. Humphrey, "Policy-
Directed Data Movement in Grids," in Proceedings of 12th
International Conference on Parallel and Distributed Systems
(ICPADS 2006), 2006, pp. 12-15.
[31] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder, "A
prototype rule-based distributed data management system," in
HPDC Workshop on Next-Generation Distributed Data
Management, 2006.
[32] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The
SDSC storage resource broker," in Proceedings of the 1998
conference of the Centre for Advanced Studies on Collaborative
research Toronto, Ontario, Canada: IBM Press, 1998.

