Cluster Comput (2010) 13: 315-333
DOI 10.1007/s10586-010-0133-8

Parameterized specification, configuration and execution

of data-intensive scientific workflows

Vijay S. Kumar - Tahsin Kurc - Varun Ratnakar - Jihie Kim - Gaurang Mehta -
Karan Vahi - Yoonju Lee Nelson - P. Sadayappan - Ewa Deelman - Yolanda Gil -

Mary Hall - Joel Saltz

Received: 7 November 2009 / Accepted: 16 March 2010 / Published online: 10 April 2010

© Springer Science+Business Media, LLC 2010

Abstract Data analysis processes in scientific applications
can be expressed as coarse-grain workflows of complex data
processing operations with data flow dependencies between
them. Performance optimization of these workflows can be
viewed as a search for a set of optimal values in a multidi-
mensional parameter space consisting of input performance
parameters to the applications that are known to affect their
execution times. While some performance parameters such
as grouping of workflow components and their mapping to
machines do not affect the accuracy of the analysis, others
may dictate trading the output quality of individual compo-
nents (and of the whole workflow) for performance. This pa-
per describes an integrated framework which is capable of
supporting performance optimizations along multiple such
parameters. Using two real-world applications in the spa-
tial, multidimensional data analysis domain, we present an
experimental evaluation of the proposed framework.

Keywords Scientific workflow - Performance parameters -
Semantic representations - Grid - Application QoS

V.S. Kumar () - P. Sadayappan

Dept. of Computer Science and Engineering, Ohio State
University, Columbus, OH 43210, USA

e-mail: kumarvi@cse.ohio-state.edu

V. Ratnakar - J. Kim - G. Mehta - K. Vahi - Y.L. Nelson -

E. Deelman - Y. Gil

Information Sciences Institute, University of Southern California,
Marina del Rey, CA 90292, USA

M. Hall
School of Computing, University of Utah, Salt Lake City,
UT 84112, USA

T. Kurc - J. Saltz
Center for Comprehensive Informatics, Emory University,
Atlanta, GA 30322, USA

1 Introduction

Advances in digital sensor technology and the complex nu-
merical models of physical processes in many scientific do-
mains are bringing about the acquisition of enormous vol-
umes of data. For example, a dataset of high resolution im-
age data obtained from digital microscopes or large scale
sky telescopes can easily reach hundreds of Gigabytes, even
multiple Terabytes in size.! These large data volumes are
transformed into meaningful information via data analysis
processes. Analysis processes in scientific applications are
expressed in the form of workflows or networks of inter-
dependent components, where each component corresponds
to an application-specific data processing operation. Image
datasets, for instance, are analyzed by applying workflows
consisting of filtering, data correction, segmentation, and
classification steps. Due to the data and compute intensive
nature of scientific data analysis applications, scalable so-
lutions are required to achieve desirable performance. Soft-
ware systems supporting the analysis of large scientific data-
sets implement several optimization mechanisms to reduce
execution times. First, workflow management systems take
advantage of distributed computing resources in the Grid.
The Grid environment provides computation and storage re-
sources; however, these resources are often located at dis-
parate sites managed within different security and admin-
istrative domains. Workflow systems support execution of
workflow components at different sites (Grid nodes) and re-
liable, efficient staging of data across the Grid nodes. A Grid
node may itself be a large cluster system or a potentially

'DMetrix array microscopes can scan a slide at 20x+ resolution in
less than a minute. The Large Synoptic Survey Telescope will be able
to capture a 3.2 Gigapixel image every 6 seconds, when it is activated.

@ Springer

mailto:kumarvi@cse.ohio-state.edu

316

Cluster Comput (2010) 13: 315-333

heterogeneous and dynamic collection of machines. Second,
for each portion of a workflow mapped to such clusters, they
enable the fine-grain mapping and scheduling of tasks onto
such machines.

The performance of workflows is greatly affected by cer-
tain parameters to the application that direct the amount of
work to be performed on a node or the volume of data to be
processed at a time. The optimal values of such parameters
can be highly dependent on the execution context. There-
fore, performance optimization for workflows can be viewed
as a search for a set of optimal values in a multidimen-
sional parameter space, given a particular execution con-
text. Workflow-level performance parameters include group-
ing of data processing components comprising the workflow
into ‘meta-components’, distribution of components across
sites and machines within a site, and the number of instances
of a component to be executed. These parameters impact
computation, I/O, and communication overheads, and as a
result, the total execution time. Another means of improving
performance is by adjusting component-level performance
parameters in a workflow. An example of such a parameter
is the data chunk size in applications which analyze spatial,
multidimensional datasets. Another example is the version
of the algorithm employed by a component to process the
data.

We classify workflow-level and component-level perfor-
mance parameters into two categories:

(i) Accuracy-preserving parameters (such as data chunk
size) can affect the performance of an operation without af-
fecting the quality of the analysis output, and (ii) Accuracy-
trading parameters can trade the quality of the output
for performance gains, and vice-versa. An example of an
accuracy-trading parameter is the ‘resolution’ at which im-
age data are processed. A classification algorithm might
process low-resolution images quickly, but its classifica-
tion accuracy would likely be lower compared to that
for higher resolution images. When optimizations involve
accuracy-performance trade-offs, users may supplement
their queries with application-level quality-of-service (QoS)
requirements that place constraints on the accuracy of the
analysis [17]. For instance, when images in a dataset are
processed at different resolutions to speed up the classifica-
tion process, the user may request that a certain minimum
accuracy threshold be achieved.

In this paper, we describe the design and implementa-
tion of a framework that can support application execution
in a distributed environment and enable performance op-
timization via manipulation of accuracy-preserving and/or
accuracy-trading parameters. We present an instance of our
framework that integrates multiple subsystems at different
levels:

— Wings [12] to facilitate high-level, semantic descriptions
of application workflows

@ Springer

— Pegasus [11], Condor [23], and DataCutter [2] to support
scalable workflow execution across multiple institutions
and on distributed clusters within an institution

— ECO [5] to enable compiler optimizations for fine-grain
computations executing on specific resources

Application developers and end-users can use our frame-
work to provide high-level, semantic descriptions of appli-
cation structure and data characteristics. As our initial fo-
cus is on addressing performance requirements in spatial,
multidimensional data analysis applications, we have devel-
oped extensions to core ontologies in Wings to be able to de-
scribe spatial datasets and also to enable automatic compo-
sition and validation of the corresponding workflows. Once
a workflow has been specified, users can adjust workflow-
level and component-level parameters based on their QoS
requirements to enable performance optimizations during
execution. As part of this effort, we have also extended Con-
dor’s default job-scheduling mechanism to support perfor-
mance optimizations stemming from accuracy-performance
related trade-offs. We show how our framework supports
parameter-based optimizations for real biomedical image
analysis workflows using two cluster systems located at two
different departments at the Ohio State University.

2 Related work

Workflow management systems for the Grid and Services
Oriented Architectures, such as Taverna [22], Kepler [19]
and Pegasus [11] seek to minimize the makespan by ma-
nipulating workflow-level parameters such as grouping and
mapping of a workflow’s components. Our framework ex-
tends such support by providing the combined use of task-
and data-parallelism and data streaming within each compo-
nent and across multiple components in a workflow to fully
exploit the capabilities of Grid sites that are high-end clus-
ter systems. Glatard et al. [13] describe the combined use
of data parallelism, services parallelism and job grouping
for data-intensive application service-based workflows. Our
work is in the context of task-based workflows where exe-
cution plans are developed based on abstract workflow de-
scriptions. We also address performance improvements by
adjusting domain-specific component-level parameters.

The Common Component Architecture (CCA) forum?
addresses domain-specific parameters for components and
the efficient coupling of parallel scientific components. They
seek to support performance improvements through the use
of external tunability interfaces [4, 21]. The Active Harmony
system [8, 9] is an automatic parameter tuning system that
permits on-line rewriting of parameter values at run-time,

Zhttp://www.cca-forum.org.

http://www.cca-forum.org

Cluster Comput (2010) 13: 315-333

317

and uses a simplex method to guide the search for opti-
mal parameter values. Although we share similar motiva-
tions with the above works, we target data-intensive appli-
cations running on the Grid. We account for performance
variations brought about by the characteristics of dataset in-
stances within a domain.

Our work also supports application-level QoS require-
ments by tuning accuracy-trading parameters in the work-
flows. The performance/quality trade-off problem and tun-
ing of quality-trading parameters for workflows has been
examined before in service-based workflows [3] and compo-
nent-based systems [10]. But these works are geared to-
wards system-level QoS and optimization of system-related
metrics such as data transfer rates, throughput and service
affinity etc. Application-level QoS for workflows has been
addressed in [6, 26]. Acher et al. [1] describe a services-
oriented architecture that uses ontology-based semantic
modeling techniques to address the variability in results pro-
duced by Grid services for medical imaging. We support
trade-offs based on quality of data output from the applica-
tion components and integrate such parameter tuning within
a batch system like Condor.

Supporting domain-specific parameter-based optimiza-
tions requires the representation of these parameters and
their relations with various performance and quality metrics
in a system-comprehensible manner. In [6], end-users are
required to provide performance and quality models of ex-
pected application behavior to the system. Ontological rep-
resentations of performance models have been investigated
in the context of workflow composition in the Askalon sys-
tem [24]. Lera et al. [18] proposed the idea of developing
performance-related ontologies that can be queried and rea-
soned upon to analyze and improve performance of intelli-
gent systems. Zhou et al. [26] used rule-based systems to
configure component-level parameters. While beyond the
scope of this paper, we seek to complement our framework
with such approaches in the near future.

Fig. 1 Pixel Intensity
Quantification (PIQ) workflow

prefix sum il

generation

3 Motivating applications

Our work is motivated by the requirements of applications
that process large spatial, multidimensional datasets. We use
the following two application scenarios from the biomedical
image analysis domain in our evaluation. Each application
has different characteristics and end-user requirements.

3.1 Application 1: Pixel Intensity Quantification (PIQ)

Figure 1 shows a data analysis pipeline [7] (developed by
neuroscientists at the National Center for Microscopy and
Imaging Research) for images obtained from confocal mi-
croscopes. This analysis pipeline quantifies pixel intensity
within user-specified polygonal query regions of the images
through a series of data correction steps as well as threshold-
ing, tessellation, and prefix sum generation operations. This
workflow is employed in studies that involve comparison of
image regions obtained from different subjects as mapped to
a canonical atlas (e.g., a brain atlas). From a computational
point of view, the main end-user requirements are (1) to min-
imize the execution time of the workflow while preserving
the highest output quality, and (2) to support the execution
of potentially terabyte-sized out-of-core image data.

3.2 Application 2: Neuroblastoma Classification (NC)

Figure 2 shows a multi-resolution based tumor prognosis
pipeline [14] (developed by researchers at the Ohio State
University) applied to images from high-power light mi-
croscopy scanners. This workflow is employed to clas-
sify image data into grades of neuroblastoma, a common
childhood cancer. Our primary goal is to optimally sup-
port user queries while simultaneously meeting a wide range
of application-level QoS requirements. Examples of such
queries include: “Minimize the time taken to classify image
regions with 60% accuracy” or “Determine the most accu-
rate classification of an image region within 30 minutes,
with greater importance attached to feature-rich regions”.

tessellation e thresholding

@ Springer

318

Cluster Comput (2010) 13: 315-333

Fig. 2 Neuroblastoma
Classification (NC) workflow

Whole-slide Image

Here, accuracy of classification and richness of features are
application domain-specific concepts and depend on the res-
olution at which the image is processed. In an earlier work,
we developed heuristics that exploit the multi-resolution
processing capability and the inherent spatial locality of the
image data features in order to provide improved responses
to such queries [17].

The aforementioned applications differ in their workflow
structure and also the complexity of their data analysis oper-
ations. The NC workflow processes a portion or chunk of
a single image at a time using a sequence of operations.
The end-result for an image is an aggregate of results ob-
tained from each independently processed chunk. PIQ, on
the other hand, contains complex analysis operations such as
aggregations, global computations and joins across multiple
datasets, that are not easily scalable. Hence, such applica-
tions require parallel algorithms for efficient processing of
out-of-core data.

4 Performance optimizations

In this section we discuss several strategies for improving
workflow performance. Drawing from the application sce-
narios, we also present parameters that impact the perfor-
mance of applications in the spatial, multidimensional data
analysis domain. We classify these parameters into two main
categories, accuracy-preserving parameters and accuracy-tr-
ading parameters, and explain how they can influence per-
formance and/or quality of output.

4.1 Accuracy-preserving parameters

Chunking strategy Individual data elements (e.g. images)
in a scientific dataset may be larger than the physical mem-
ory available on current workstations. Relying on virtual

@ Springer

[mulﬁ-resolution decomposiﬁon]—

= A

= =

5 v segmentation
- feature
extraction

¥ IRi

Image chunk

N s

classification

Chunk
“finalized”

memory alone is likely to yield poor performance. In gen-
eral, the processing of large, out-of-core spatial, multidi-
mensional data is supported by partitioning it into a set of
data chunks, each of which can fit in memory, and by mod-
ifying the analysis routines to operate on chunks of data at
a time. Here, a data chunk provides a higher-level abstrac-
tion for data distribution and is the unit of disk I/O. In the
simplest case, we can have a uniform chunking strategy, i.e.
all chunks have the same shape and size. For 2-D data, this
parameter is represented by a pair [W, H], where VW and
‘H respectively represent the width and height of a chunk.
In our work, we use this simplified strategy and refer to
this parameter as chunksize. The chunksize parame-
ter can influence application execution in several ways. The
larger a chunk is, the greater the amount of disk I/O and
inter-processor communication for that chunk will likely be,
albeit the number of chunks will be smaller. The chunk-
size affects the number of disk blocks accessed and net-
work packets transmitted during analysis. However, larger
chunks imply a decreased number of such chunks to be
processed, and this could in turn, decrease the job schedul-
ing overheads. Moreover, depending on the levels of mem-
ory hierarchy and hardware architecture present on a com-
pute resource, the chunksize can affect the number of
cache hits/misses for each component and thus, the over-
all execution time. For the PIQ workflow, we observed that
varying chunksize resulted in differences in execution
time. Moreover, the optimal chunksize for one compo-
nent may not be optimal for other components; some com-
ponents prefer larger chunks, some prefer square-shaped
chunks over thin-striped chunks, while others may function
independent of the chunksize.

Component configuration Components in a workflow co-
uld have many algorithmic variants. Traditionally, one of
these variants is chosen based on the fype of the input
data to the component and/or the type of the output data

Cluster Comput (2010) 13: 315-333

319

expected from the component. However, choosing an al-
gorithmic variant can affect the application performance
based on resource conditions/availability and data charac-
teristics, even when each variant performs the analysis dif-
ferently but produces the same output and preserves the
output quality. In an earlier work [15], we developed three
parallel-algorithmic variants for the warp component of the
PIQ workflow. We observed that depending on the available
resources—clusters nodes with faster processors or clusters
equipped with high-speed interconnects or nodes offering
higher disk I/O rates—each variant was capable of outper-
forming the other, and no single variant performed best un-
der all resource conditions.

Task granularity and execution strategy A workflow may
consist of many components. If a chunk-based processing of
datasets is employed, creating multiple copies of a compo-
nent instance may speed up the process through data paral-
lelism. How components and component copies are sched-
uled, grouped, and mapped to machines in the environment
will affect the performance, in particular if the environment
consists of a heterogeneous collection of computational re-
sources. An approach could be to treat each (component in-
stance, chunk) pair as a task and each machine in the en-
vironment as a Grid site. This provides a uniform mech-
anism for execution within a Grid site as well as across
Grid sites. It also enables maximum flexibility in using job
scheduling systems such as Condor [23]. However, if the
number of component instances and chunks is large, then the
scheduling and data staging overheads may assume signif-
icance. An alternative strategy is to group multiple compo-
nents into meta-components and map/schedule these meta-
components to groups of machines. Once a meta-component
is mapped to a group of machines, a combined task- and
data-parallelism approach with pipelined dataflow style ex-
ecution can be adopted within the meta-component. When
chunking is employed, the processing of chunks by suc-
cessive components (such as thresholding and tessellation
in the PIQ workflow) can be pipelined such that, when a
component C1 is processing a chunk i, then the downstream
component C2 can concurrently operate on chunk i + 1 of
the same data element. A natural extension to pipelining is
the ability to stream data between successive workflow com-
ponents mapped to a single Grid site, so that the intermediate
disk I/O overheads are avoided.

4.2 Accuracy-trading parameters

Chunking strategy The chunksize parameter may also
function as an accuracy-trading performance parameter in
cases where analysis operations depend on the feature con-
tent within a data chunk. In the NC workflow, chunksize
affects both the performance and accuracy of the analysis.

The smaller the chunksize is, the faster the analysis of
each chunk. However, small chunksize values (where
chunks are smaller than the features being analyzed) could
lead to false-negatives. If the chunk is too large, then extra-
neous features and noise within a chunk could impact the
accuracy of analysis.

Data resolution Spatial data has an inherent notion of data
quality. The resolution parameter for spatial, multidi-
mensional data takes values from 1 to n, where n represents
the data at its highest quality. If a multi-resolution analy-
sis approach is adopted, then the processing of data chunks
at different resolutions will produce output of varying
quality. Execution time increases with resolution be-
cause higher resolutions contain more data to be processed.
In some cases, data may need to be processed only at the
lowest target resolution that can yield a result of adequate
quality. It is assumed that the accuracy of analysis is maxi-
mum when data is processed at its highest resolution.

Processing order The processing order parameter
refers to the order in which data chunks are operated upon
by the components in a workflow. In the NC workflow, the
accuracy of analysis computed across an entire image is ob-
tained as an aggregate of the accuracy of analysis for each
chunk in the image. As aggregation is not always commuta-
tive, the order in which chunks are processed will affect the
accuracy of analysis when computed across the entire im-
age. Our previous work [17] with the NC workflow showed
how out-of-order processing of chunks (i.e., selecting a sub-
set of “favorable” chunks ahead of other chunks) in an im-
age could be used to improve response (by upto a factor of
40%) to user queries that contain various quality-of-service
requirements.

5 Workflow composition and execution framework

In this section, we describe our framework to support spec-
ification and execution of data analysis workflows. The
framework consists of three main modules. The descrip-
tion module implements support for high-level specifica-
tion of workflows. In this module, the application structure
and data characteristics for the application domain are pre-
sented to the system. This representation is independent of
actual data instances used in the application and the com-
pute resources on which the execution is eventually car-
ried out. The execution module is responsible for work-
flow execution and takes as input, the high-level description
of the workflow produced by the description module, the
datasets to be analyzed and the target distributed execution
environment. Lastly, the trade-off module, implements run-
time mechanisms to enable accuracy-performance trade-offs

@ Springer

320

Cluster Comput (2010) 13: 315-333

Fig. 3 Framework architecture

TRADE-OFF
MODULE

“Classify all images with
at least 50% accuracy
within 10 minutes”

= Map requirements
onto parameters

« Determine
paramater values
dynamically

Application I /
Workflow

Analysis requests
Queries
QoS requirements

Image Data I
Streams

0L S0

Pegasus WMS

» Concrete Execution Plans

1L

DESCRIPTION MODULE

* Map onto Grid resources
» DAG scheduling
(Condor/DAGMan)

WINGS

DataCutter

Application

i » Workflow Template
i » Domain-specific

i ontology

: = Core ontology

* Instance

hin » Filter-stream progarmming
* Map components onto cluster

‘OWL|

based on user-specified quality-of-service requirements and
constraints. The architecture of the framework is illustrated
in Fig. 3. In this paper, we evaluated a specific instance of
this framework where the representative systems for each
module are highlighted using blue boxes in the figure.

5.1 Description module (DM)

The Description Module (DM) is implemented using the
Wings (Workflow Instance Generation and Selection) sys-
tem [12]. In the Wings representation of a scientific work-
flow, the building blocks of a workflow are components and
data types. Application domain-specific components are de-
scribed in component libraries. A component library speci-
fies the input and output data types of each component and
how metadata properties associated with the input data types
relate to those associated with the output for each compo-
nent. The data types themselves are defined in a domain-
specific data ontology. Wings allows users to describe an
application workflow using semantic metadata properties
associated with workflow components and data types at a
high level of abstraction. This abstraction is known as a
workflow template. The workflow template and the seman-
tic properties of components and data types are expressed

@ Springer

G - systems

enerzﬂun. » Combined task + data
* Metadata ; parallelism
propagation, i
» Parameter settings

5 ECO
Jena ‘ *Model-based compiler
optimizations

using the Web Ontology Language(OWL).3 A template ef-
fectively specifies the application-specific workflow compo-
nents, how these components are connected to each other to
form the workflow graph, and the type of data exchanged
between the components. Figure 4(a) is a depiction of a
workflow template constructed for the PIQ application. The
workflow template is data-instance independent; it specifies
data types consumed and produced by the components but
not particular datasets. Wings can use the semantic descrip-
tions to automatically validate a given workflow, i.e., if two
components are connected in the workflow template, Wings
can check whether output data types and properties of the
first component are consistent with the input data types and
properties of the second component. Given a workflow tem-
plate, the user can specify a data instance (e.g., an image) as
input to the workflow and the input argument values to each
component in the workflow. Using the metadata properties
of the input datasets, Wings can automatically generate a
detailed specification of the workflow tasks and data flow in
the form of a DAG referred to as an expanded workflow in-

http://www.w3.org/TR/owl-ref.

http://www.w3.org/TR/owl-ref

Cluster Comput (2010) 13: 315-333

321

StackFile's

ChunkisizeMetaFile

prenormalize

ProjectedChunkFile's

[offselileFile | [AverageTileFie

NormalizedProje ctedChunkFile's

DisplacementsFile

StitchedChunkFie's

reorganize

ControPointsFile
WarpMetaFile

preprocess

(a) Workflow Template created for PIQ

Fig. 4 PIQ application workflow represented using Wings

stance for execution. Figure 4(b) shows a workflow instance
generated by Wings from the PIQ workflow template.

Domain-specific data ontology Wings provides “core” on-
tologies that can describe abstract components and data

(b) Workflow Instance generated by Wings for chunksize
parameter = 2560 x 2400 pixels

types. For any new application domain, these core ontolo-
gies can be extended to capture domain-specific informa-
tion. Semantic descriptions for new data types and compo-
nents are maintained in domain-specific ontologies. Work-
flow templates for applications within that domain can then

@ Springer

322

Cluster Comput (2010) 13: 315-333

OwWL I Core WINGS I

Domain specific I
file ontology

file ontology

» ImageFile
IMGImage
PPMImage
»™DimFile
*ChunkFile
ProjectedChunkFile

NormalizedProjectedChunkFile
NormalizedChunkFile

= TileFile
AvgTileFile
OffsetTileFile

»™MetaFile
ChunkisizeMetaFile
WarpMetaFile

» ControlPointsFile

»OffsetsFile

»ParamFile

» StackFile

™ SliceFile
ProjectedSliceFile
NormalizedProjectedSliceFile
MNormalizedSliceFile

» FileCollection |

» StacksFile

™ AllSlicesFile
AliNormalizedSliceFile
AliStitchedSliceFile

» CollofCollections |

Fig. 5 Wings data ontology extensions for spatial, multidimensional
data

be constructed using these ontologies. The core data ontol-
ogy in Wings contains OWL-based descriptions of generic
data concepts such as File, Collection of Files of
the same type, and CollOfCollections, as well as
their metadata properties. However, our motivating applica-
tions process spatial, multidimensional data by partitioning
datasets into higher-level entities called chunks. The core
data ontology is not expressive enough to capture the seman-
tics of datasets used in our motivating applications. So, we
extended this core ontology (as shown in Fig. 5) to express
concepts and properties in the spatial, multidimensional data
model so that application data flow can be conveniently de-
scribed in terms of these concepts. While this ontology is
not exhaustive, it is generic enough to represent typical ap-
plication instances such as the PIQ and NC workflows. It
can also be extended to support a wider range of data analy-
sis applications within the domain.

Wings also provides compact representations in the tem-
plate for component collections, i.e., cases where multiple
copies of a component can be instantiated to perform the
same analysis on different data input instances. The num-
ber of such copies for a component can be selected during
the workflow instance generation stage based on the prop-
erties of the input datasets. Performance can be improved
by adjusting both the task- and data-parallelism parame-
ter as well as application performance parameters such as
chunksize. For the PIQ and NC workflows, the chunk-
size parameter dictates the unrolling of component col-
lections in the workflow template into a bag of component
tasks in the workflow instance. As an example, assume that

@ Springer

the value of the chunksize parameter chosen for a given
input image was 2560 x 2400 pixels and resulted in each im-
age slice being partitioned into 36 chunks. The correspond-
ing expanded workflow instance for the PIQ workflow as
shown in Fig. 4(b) contains 116 tasks. Component collec-
tions are shown in the workflow instance as long horizontal
rows of tasks, signifying that each collection has been un-
rolled into 36 tasks, where each task represents an operation
performed on a single chunk. Thus, chunksize parameter
influences the structure of the resulting workflow instance.

In our current system, we also support the notion of
meta-components or explicit component grouping. A meta-
component can be viewed as a combination or clustering
of components across multiple levels in a workflow tem-
plate. Coalescing components into meta-components corre-
sponds to the adjustment of the task granularity pa-
rameter for performance optimization. During execution, all
tasks within a meta-component are scheduled at once and
mapped to the same set of resources. Note that the use of
meta-components complements the existing job clustering
capabilities provided by Grid workflow systems such as Pe-
gasus [11]. Horizontal and vertical job clustering capabil-
ities in Pegasus are used to group tasks that are explicitly
specified in a workflow instance. However, it is highly de-
sirable to also support the following features:

— Task parallelism: Vertical clustering implies that work-
flow tasks at multiple levels are grouped into clusters
so that each group can be scheduled for execution on
the same processor. To improve performance, task par-
allelism across tasks within such groups, and also data
streaming from one task to another is needed to avoid disk
I/O overheads.

— Fine-grain control: Workflows such as PIQ also contain
parallel components (e.g., MPI-style jobs) that execute
across a number of nodes, but whose processes are not
expressed as explicit tasks in the workflow instance. It is
the responsibility of the parallel runtime system at a site
to manage the processes of such components across the
nodes at that site.

Meta-components can provide such task-parallelism and
fine-grain control. By grouping successive components into
a meta-component in the workflow template, each such com-
ponent’s processes can be concurrently scheduled for ex-
ecution on the same compute resource. For example, the
grey rectangles shown in the workflow instance in Fig. 6
indicate that all processes corresponding to all four com-
ponents (shown as blue ovals) in the workflow have been
fused into a meta-component. One task corresponding to
each meta-component will be scheduled for execution con-
currently. Within each meta-component task, the execution
is pipelined, and data is streamed from one component to
another during execution.

Cluster Comput (2010) 13: 315-333

323

Fig. 6 Meta-components in the
NC workflow instance

5.2 Execution module (EM)

The Execution Module (EM) consists of the following sub-
systems that work in an integrated fashion to execute work-
flows in a distributed environment and on cluster systems:

Pegasus workflow management system is used to reliably
map and execute application workflows onto diverse com-
puting resources in the Grid [11]. Pegasus takes resource-
independent workflow descriptions generated by the DM
and produces concrete workflow instances with additional
directives for efficient data transfers between Grid sites.
Portions of workflow instances are mapped onto different
sites, where each site could potentially be a heterogeneous,
cluster-style computing resource. Pegasus is used to manip-
ulate the component config parameter, i.e. the compo-
nent transformation catalog can be modified to select an ap-
propriate mapping from components to analysis codes for a
given workflow instance. Pegasus also supports runtime job
clustering to reduce scheduling overheads. Horizontal clus-
tering groups together tasks at the same level of the work-
flow (e.g. the unrolled tasks from a component collection),
while vertical clustering can group serial tasks from succes-
sive components. All tasks within a group are scheduled for
execution on the same set of resources. However, Pegasus
does not currently support pipelined dataflow execution and
data streaming between components. This support is pro-
vided by DataCutter [2] as explained later in this section.

is used to schedule tasks across machines.

Condor [23]
Pegasus submits tasks corresponding to a portion of a work-
flow in the form of a DAG to DAGMan meta-scheduler
instances running locally at each Grid site. DAGMan re-
solves the dependencies between jobs and accordingly sub-
mits them to Condor, the underlying batch scheduler system.

DataCutter [2] is employed for pipelined dataflow execu-
tion of portions of a workflow mapped to a Grid site con-
sisting of cluster-style systems. A task mapped and sched-
uled for execution by Condor on a set of resources may
correspond to a meta-component. In that case, the execu-
tion of the meta-component is carried out by DataCutter
in order to enable the combined use of task- and data-
parallelism and data streaming among components of the
meta-component. DataCutter uses the filter-stream program-
ming model, where component execution is broken down
into a set of filters that communicate and exchange data
via a stream abstraction. For each component, the analy-
sis logic (expressed using high-level languages) like C++-,
Java, Matlab and Python) is embedded into one or more
filters in DataCutter. Each filter executes within a separate
thread, allowing for CPU, I/O and communication overlap.
Multiple copies of a filter can be created for data parallelism
within a component. DataCutter performs all steps neces-
sary to instantiate filters on the target nodes and invokes each
filter’s analysis logic. A stream denotes a unidirectional data
flow from one filter (i.e., the producer) to another (i.e., the

@ Springer

324

Cluster Comput (2010) 13: 315-333

consumer). Data exchange among filters on the same node
is accomplished via pointer hand-off while message passing
is used for filters on different nodes. In our framework, we
employ a version of DataCutter that uses MPI for commu-
nication to exploit high-speed interconnect technology on
clusters that support them.

ECO compiler Within the execution of a single com-
ponent task, the Empirical Compilation and Optimiza-
tion (ECO) compiler can be employed to achieve targeted
architecture-specific performance optimizations. ECO uses
model-guided empirical optimization [5] to automatically
tune the fine-grain computational logic (where applicable)
for multiple levels of the memory hierarchy and multi-core
processors on a target compute resource. The models and
heuristics employed in ECO limit the search space, and the
empirical results provide the most accurate information to
the compiler to tune performance parameter values.

5.3 Trade-off module (TM)

When large datasets are analyzed using complex operations,
an analysis workflow may take too long to execute. In such
cases, users may be willing to accept lower quality output
for reduced execution time, especially when there are con-
straints on resource availability. The user may, however, de-
sire that a certain application-level quality of service (QoS)
be met. Examples of QoS requirements in image analysis
include Maximize the average confidence in classification
of image tiles within t time units and Maximize the number
of image tiles, for which the confidence in classification ex-
ceeds the user-defined threshold, within t units of time [17].
We have investigated techniques which dynamically order
the processing of data elements to speed up application ex-
ecution while meeting user-defined QoS requirements on
the accuracy of analysis. The Trade-off Module (TM) draws
from and implements the runtime support for these tech-
niques so that accuracy of analysis can be traded for im-
proved performance.

We provide generic support for reordering the data
processing operations in our framework by extending Con-
dor’s job scheduling component. When a batch of tasks
(such as those produced by expansion of component col-
lections in a Wings workflow instance) is submitted to Con-
dor, it uses a default FIFO ordering of task execution. Con-
dor allows users to set the relative priorities of jobs in the
submission queue. However, only a limited range (—20 to
+20) of priorities are supported by the condor_prio util-
ity, while a typical batch could contain tasks corresponding
to thousands of data chunks. Moreover, condor_prio does
not prevent some tasks from being submitted to the queue
in the first place. In our framework, we override Condor’s
default job scheduler by invoking a customized scheduling
algorithm that executes as a regular job within Condor’s

@ Springer

“scheduler universe” and does not require any super-user
privileges. The scheduling algorithm implements a priority
queue-based job reordering scheme [17] in a manner that is
not tied to any particular application. It uses the semantic
representations of data chunks in order to map jobs to the
spatial coordinates of the chunks. When the custom sched-
uler decides which chunk to process next based on its spa-
tial coordinates and other spatial metadata properties, it uses
this association to determine the job corresponding to this
chunk and moves it to the top of the queue. The custom
scheduler can be employed for any application within the
spatial data analysis domain. The priority queue insertion
scheme can be manipulated for different QoS requirements
such that jobs corresponding to the favorable data chunks
are scheduled for execution ahead of other jobs. In this way,
the customized scheduler helps exercise control over the
processing order parameter. When there are no QoS
requirements associated with the user query, our framework
reverts to the default job scheduler within Condor.

5.4 Framework application

Our current implementation of the proposed framework sup-
ports the performance optimization requirements associated
chunk-based image/spatial data analysis applications. How-
ever, the framework can be employed in other data analysis
domains. The customized Condor scheduling module facil-
itates a mechanism for trading analysis accuracy for per-
formance with user-defined quality of service requirements.
The current implementation instance of our framework pro-
vides support for users to specify and express the values of
various performance parameters to improve performance of
the workflow. When dealing with application-specific per-
formance parameters at a fine-grain computation levels, the
model-guided optimization techniques in ECO can assist
the user in determining the optimal parameter values. We
view this as a first step towards an implementation that can
automatically map user queries to appropriate parameter
value settings. We target application scenarios where a given
workflow is employed to process a large number of data ele-
ments (or a large dataset that can be partitioned into a set of
data elements). In such cases, a subset of those data elements
could be used to search for suitable parameter values (by ap-
plying sampling techniques to the parameter space) during
workflow execution and subsequently refining the choice of
parameter values based on feedback obtained from previous
runs. Statistical modelling techniques similar to those used
in the Network Weather Service [25] can be used to predict
performance and quality of future runs based on information
gathered in previous runs.

6 Experimental evaluation

In this section, we present an experimental evaluation of
our proposed framework using the two real-world applica-

Cluster Comput (2010) 13: 315-333

325

tions, PIQ and NB, described in Sect. 3. Our evaluation
was carried out across two heterogeneous Linux clusters
hosted at different locations at the Ohio State University.
The first one (referred to here as RII-MEMORY) consists
of 64 dual-processor nodes equipped with 2.4 GHz AMD
Opteron processors and 8§ GB of memory, interconnected
by a Gigabit Ethernet network. The storage system consists
of 2 x 250 GB SATA disks installed locally on each com-
pute node, joined into a 437 GB RAIDO volume. The sec-
ond cluster, (referred to here as RII-COMPUTE), is a 32-
node cluster consisting of faster dual-processor 3.6 GHz In-
tel Xeon nodes each with 2 GB of memory and only 10 GB
of local disk space. This cluster is equipped with both an
InfiniBand interconnect as well as a Gigabit Ethernet net-
work. The RII-MEMORY and RII-COMPUTE clusters are
connected by a 10-Gigabit wide-area network connection—
each node is connected to the network via a Gigabit card,;
we observed about 8 Gigabits/sec application level aggre-
gate bandwidth between the two clusters. The head-node of
the RII-MEMORY cluster also served as the master node
of a Condor pool that spanned all nodes across both clus-
ters. A Condor scheduler instance running on the head-node
functioned both as an opportunistic scheduler (for “vanilla
universe” jobs) and a dedicated scheduler (for parallel jobs).
The “scheduler universe” jobs in Condor, including our cus-
tomized scheduling algorithm, when applicable, run on the
master node. All other nodes of the Condor pool were con-
figured as worker nodes that wait for jobs from the master.
DataCutter instances executing on the RII-COMPUTE clus-
ter use the MVAPICH flavor* of MPI for communication
to exploit the InfiniBand interconnect. Our evaluation of the
ECO compiler’s automated parameter tuning was carried out
independently on a Linux cluster hosted at the University of
Southern California. In this cluster (referred to as HPCC)
we used a set of 3.2 GHz dual Intel Xeon nodes each with
2 GB of memory for our evaluation.

In the following experiments, we evaluate the perfor-
mance impact of a set of parameter choices on workflow ex-
ecution time. First, a set of accuracy-preserving parameters
are explored, as we would initially like to tune the perfor-
mance without modifying the results of the computation. We
subsequently investigate the accuracy-trading parameters.

6.1 Accuracy-preserving parameters

We used our framework to evaluate the effects of three dif-
ferent accuracy-preserving parameters on the execution time
for the PIQ workflow—(i) the chunksize, a component-
level parameter, (ii) the task granularity, a workflow-level
parameter, and (iii) numActiveChunks, a component-
level parameter that is specific to the warp component. Two

“http://mvapich.cse.ohio-state.edu.

additional accuracy-preserving parameters—component
config and component placement were set to their
optimal values based on our prior experience with and eval-
uations of the PIQ workflow. In an earlier work [15], our
evaluations revealed that certain components of the PIQ
workflow such as normalize and autoalign were much faster
when mapped for execution onto cluster machines equipped
with fast processors and high-speed interconnects. Based on
these evaluations and our knowledge of the data exchange
between components in the workflow, we determined an
optimal component placement strategy which mini-
mized overall computation time as well as the volume of
data exchange between nodes. In this strategy, components
zproject, prenormalize, stitch, reorganize, warp and the
preprocess meta-component execute on the RII-MEMORY
cluster nodes, while the normalize, autoalign and mst com-
ponents are mapped to the faster processors of the RII-
COMPUTE cluster. This component placement strat-
egy allows for maximum overlap between computation and
data communication between sites for the PIQ workflow.
In another earlier work [16], we designed multiple algo-
rithmic variants for the warp and preprocess components
of the PIQ workflow. Our evaluations helped us select the
most performance-effective variant for these components
depending upon the resources they are mapped to. In our
experiments, we fixed the values of these latter two parame-
ters and then set out to tune or determine optimal values for
the remaining parameters. Our strategy was to treat differ-
ent parameters independently, selecting a default value for
one parameter while exploring the other. The decision as to
which parameter to explore first is one that can either be
made by an application developer, or can be evaluated sys-
tematically by a set of measurements, such as the sensitivity
analysis found in [9].

Effects of chunksize For these experiments, we used a
5 GB image with 8 focal planes, with each plane at a reso-
lution 15,360 x 14,400 pixels. The chunksize parameter
determines the unrolling factor for component collections in
the template shown in Fig. 4(a). Varying the chunksize
parameter value affects the structure of the resulting work-
flow instance and the number of workflow tasks to be sched-
uled, as shown in Table 1.

The disparity among the number of tasks in the result-
ing workflow instances will increase as the images grow in
size, because larger images can accommodate more combi-
nations of the chunk dimensions. If workflow templates have
a larger number of component collections, then the number
of tasks in the resulting workflow instance will vary more
greatly with chunksize value. As job submission and job
scheduling overheads are sizeable contributions to the over-
all execution time, one possible optimization technique is
to employ horizontal clustering of tasks from every compo-
nent collection. The table also shows the number of tasks in

@ Springer

http://mvapich.cse.ohio-state.edu

326

Cluster Comput (2010) 13: 315-333

Table 1 Number of tasks in PIQ workflow instance for a given
chunksize parameter value

chunksize # of chunks # of tasks in workflow
(pixels) in a plane (no (horizontal
clustering) clustering::32)

512 x 480 900 2708 95

1024 x 960 225 683 32

1536 x 1440 100 308 20

2560 x 2400 36 116 14

3072 x 2880 25 83

5120 x 4800 9 35

the resulting PIQ workflow instance for each chunksize
value when horizontal clustering by Pegasus is used to group
tasks from component collections into bundles of 32 tasks
each. Ideally, with horizontal clustering, one should expect
diminishing job scheduling overheads and lesser disparity
in the execution times observed at different chunksize
values.

Figure 7(a) shows the overall execution time for the PIQ
workflow instance when choosing different chunksize
parameter values, both with and without using horizontal
job clustering (we used 16 RII-MEMORY nodes and 8 RII-
COMPUTE nodes for these experiments). This time is in-
clusive of the time to stage data in and out of each site dur-
ing execution, the actual execution times for each compo-
nent, and the job submission and scheduling overheads. We
observe that: (1) At both extremes of the chunksize pa-
rameter value range, the execution times are high. The job
submission and scheduling overheads for the large number
of tasks dominate at smallest chunksize value. At the
largest chunksize value, the number of resulting chunks
in an image becomes lesser than the number of worker
nodes available for execution. Since each task must process
at least one chunk, the under-utilization of resources leads
to higher execution times. (2) The intermediate values for
chunksize yield more or less similar performance, except
for an unexpected spike at chunksize = 2560 x 2400.
On further investigation of the individual component exe-
cution times, we observed that the algorithmic variant used
for the warp component—which accounts for nearly 50%
of the overall execution time of PIQ—performed poorly at
this chunksize value. Figures 7(b) and 7(c) show how
chunksize value affects performance at the level of each
component. (3) Horizontal job clustering, as expected, low-
ers execution time at smaller chunksize values. At larger
chunksize values, the lack of a large job pool to begin
with renders job clustering ineffective.

As mentioned earlier, chunksize value is expected to
have a greater impact on the performance for larger im-
ages because of the larger range within which the parame-
ter values can be varied. Figure 7(d) presents our evaluation

@ Springer

results obtained for a 17 GB image (with 3 focal planes,
each plane having 36864 x 48000 pixels). We used 32 RII-
MEMORY nodes and 8 RII-COMPUTE nodes for these ex-
periments. The chunksize parameter has been shown us-
ing separate axes for the chunk width and the chunk height
for better viewing of the results. The surface was plotted
based on results obtained using 75 different values of the
chunksize parameter. Again, we observe poor perfor-
mance at the extreme low and high values of chunksize
for the same reasons outlined earlier. Here, we also observed
that chunksize values that correspond to long horizontal
stripe chunks yielded better performance for the PIQ work-
flow and this class of data. This tells us that most analy-
sis operations in the PIQ workflow favor horizontal striped
chunks. In future endeavors, our framework will seek to de-
termine the best values of the chunksize parameter by
efficient navigation of the surface based on sampling tech-
niques and trends generated from training data.

Effects of task granularity In these experiments, we coa-
lesced components of the PIQ workflow into meta-compone-
nts to produce a workflow template with a coarser task gran-
ularity. Figure 8 illustrates an alternative workflow tem-
plate for the PIQ application generated using Wings, that
groups components into meta-components. Here, the zpro-
Jject and prenormalize steps from the original template are
fused to form metacompl; normalize, autoalign, mst are
collectively metacomp2 while stitch, reorganize, warp form
metacomp3. Preprocess is the fourth meta-component in the
workflow template and includes the thresholding, tessella-
tion and prefix sum generation components. By using this
representation, our framework further reduces the number
of tasks in a workflow instance. When component collec-
tions are embedded within a meta-component, they are not
explicitly unrolled at the time of workflow instance genera-
tion. Instead, they are implicitly unrolled at runtime within
a corresponding DataCutter instance. That is, the chunk-
size input parameter to a meta-component is propagated
to the DataCutter filters set up for each component within
that meta-component. Based on the value of chunksize,
DataCutter will create multiple transparent copies of filters
that handle the processing of tasks within a component col-
lection. Each such filter copy or instance will operate on a
single chunk at a time. We also manipulated the execution
strategy within the preprocess meta-component to support
task-parallelism (i.e., pipelined execution of data chunks) in
order to avoid disk I/O overheads for the meta-component.
Figure 9 shows that the overall execution time for the PIQ
workflow improves by over 50% when the task granular-
ity strategy employed includes meta-components. The fig-
ure also shows the changes in execution times for individual
components of the workflow. For parallel components like
autoalign and warp, there is no difference in performance

Cluster Comput (2010) 13: 315-333

327

T T -1
. 0 job ¢|
with Pegasus horgor{teﬂ clusterln

T

ustering wzz
EXX3R

4000
3500
3000
(o]
8
=2500 -
£ 2000 5
SR B
5 =R T
2 R oo K
5 i oo 1
31500 f R /;.».»
g NN
i 3 o5 5
1000 | s
p o
e oo
L 2000! 75 00
: :
9% ot /6’0’4
o = U U
512x480

3
R

RIIIIIIIII2

1024x960 1536x1440 2560x2400 3072x2880 5120x4800

Chunksize (pixels)
(a) Total PIQ workflow execution time for varying

chunksize parameter values

400

' ﬁﬁpéctwmm
prenormajize ©
normalize
350 autoalign mzzz -
—~300
)
@
)

(
n
a
o

n
o
o

4]
o

Execution time
2 &
=}

T

o
o
T

o

Chunksize (pixels)
(b) Execution time for individual components of PIQ workflow

2200
2100
2000
1900
1800
1700
1600
1500
1400

time

chunk width (pixels)

2500

2000

1500

1000

500

Execution time (sec)

512x480 1024x960 1536x1440 2560x2400 3072x2880 5120x4800
Chunksize (pixels)

(c) Execution time for the warp component

2200
2100
2000
1900
1800
1700
1600
1500
1400

2000

00

(d) Total PIQ workflow execution time for varying chunksize parameter values (large image)

Fig. 7 Effect of varying chunksize parameter on PIQ workflow executio!

n

@ Springer

328

Cluster Comput (2010) 13: 315-333

partition

— —
metacompl D

| OffsetTileFile | ‘ AverageTileFile

¥

Getacompi!

DisplacementsFile

ControlPointsFile

NormalizedProjectedChunkFile's

(_metacump{

WarpMetaFile

T .
p eprocesy
~

I

| preprocess_QOutput_PreprocessMetaFile_1 |

Fig. 8 Wings workflow template for the PIQ application with
meta-components

3000

I Low task grénularity —
High task granularity (metacomponents)

2500

2000

1500

1000

Execution time (sec)

500

Full workflow zproject

normalize reorganize autoalign warp

Component

Fig. 9 Execution time with different task granularity (5 GB image,
40 nodes, chunksize =512 x 480)

because the actual scheduling of processes within a compo-
nent is carried out in the same way regardless of whether
meta-components are used or not. However, component col-
lections like zproject, normalize and reorganize benefit from
the high-granularity execution. This difference is attributed
to the two contrasting styles of execution that our framework
can offer by integrating Pegasus and DataCutter. Pegasus
supports batch-style execution where the execution of each

@ Springer

task is treated independently. If startup costs (e.g. MATLAB
invocation or JVM startup) are involved in the execution of
a task within a component collection, such overheads are in-
curred for each and every task in the collection. In contrast,
DataCutter functions like a services-based system, where fil-
ters set up on each worker node perform the desired startup
operations only once and process multiple data instances.
The input data to a collection can thus be streamed through
these filters. Depending on the nature of the tasks within
a collection, our framework can use explicit unrolling and
execution via Pegasus, or implicit unrolling within a meta-
component and execution via DataCutter.

Effects of parameter tuning for individual components In
these experiments, we take a closer look at accuracy-
preserving parameters that are specific to individual compo-
nents in the workflow. Our goal here is to show how the auto-
tuning of such parameters based on model-guided optimiza-
tion techniques within the ECO compiler can reduce the
execution times of the individual components, and hence, of
the overall workflow. In the PIQ workflow, one of the algo-
rithmic variants of the warp component, known as the On-
Demand Mapper (ODM), was shown to provide best perfor-
mance among all variants, as long as the amount of physical
memory available on the cluster nodes was not a limiting
factor in the execution [16]. The benefits of ODM derived
from the fact that ODM, unlike the other variants, seeks to
maintain large amounts of data in memory during execution.
We identified a parameter called numActiveChunks that
affects the execution time of the ODM variant by limiting
the number of ‘active’ data chunks that ODM can main-
tain in memory on a node at any given time. The larger
the number of active chunks that can be maintained in
memory, the greater the potential for data reuse when the
warping transformations are computed for the input data.
The potential reduction in chunk reads and writes via data
reuse leads to lesser execution time. The maximum value of
numActiveChunks parameter depends on the size of the
chunks and the available physical memory on a node. How-
ever, the optimal numActiveChunks value may depend
on other factors such as the potential for data reuse in the
ODM variant for a given memory hierarchy which need to
be modeled appropriately.

We introduced a novel technique for modeling that dis-
covers the behavior of such application-level parameters thr-
ough the use of functional models and statistical methods
in [20]. Our technique requires the component developer to
identify a set of integer-valued parameters, and also spec-
ify the expected range for the optimal parameter value. The
models are derived from sampling the execution time for a
small number of parameter values, and evaluating how well
these sample points match a functional model. To derive the
functional model of the sample data, we use the curve fitting

Cluster Comput (2010) 13: 315-333

329

toolbox in MATLAB to find the function that best fits the
data, and also to compute the R value in order to quantify
the accuracy of our model. Ultimately, we discovered that
the double-exponential function (y = a % e?** + ¢ % e?*¥)
was the best overall match for the application-level parame-
ters in our set of experiments. Using this double-exponential
function model, the algorithm can select the parameter value
for which the function is minimized, and can dynamically
identify the neighborhood of the best result.

Our experiments were conducted on nodes of the HPCC
cluster. Here, we evaluated only the warp component of the
PIQ workflow. Specifically, we evaluated only the ODM
variant of the component in order to determine the opti-
mal value of the numActiveChunks parameter. Figure 10
shows results of our evaluation from warping a single slice
of the image data described earlier in this section. We try to
model the behavior of the numActiveChunks parameter
for the input data using a statistical analysis approach. In this
figure, the curve represents the double-exponential function
obtained using five sample data points, while the remaining
points obtained from the exhaustive search within the range
of permissible parameter values are also shown. The area
between the dotted lines represents the range of parameter
values that our model predicts will have performance within
2% of the best performance. In this case, we predicted the
optimal value of 74 for the numActiveChunks through
the function model, which ended up being within 1.25% of
the real best performance that one could obtain using the
exhaustive search.

We validate our model by comparing against perfor-
mance results from an exhaustive set of experiments across
the entire permissible parameter range. Overall, we have
achieved speedups up to 1.38X as compared to the worst-
case performance from an exhaustive search while being
within 0.57% and 1.72% of the best performance from the
exhaustive search. We examined only 5% of the parame-
ter search space by computing five point samples. Our ex-

350

* Exhaustive data
* Sample data
=== Functional model

Default point

(2]

[

o
T

Execution time (sec)
«
e

Optimal point

N

©

(=]
T

) . Best point,
74 80 95100

270— !

numActiveChunks

Fig. 10 Autotuning to obtain optimal value of numActiveChunks
parameter for the warp component; 8 processors

perimental results show speedups of up to 1.30X as com-
pared to the user-specified default parameter value. While
our speedup is small when placed in the context of the over-
all PIQ workflow, our selection of parameter values based
on a statistical analysis approach derives improved perfor-
mance as compared to current user-specified values.

6.2 Accuracy-trading parameters

These experiments demonstrate performance gains obtained
when one or more accuracy-trading parameters were modi-
fied in response to queries with QoS requirements. The op-
timizations in these experiments are derived from the cus-
tom scheduling approach described in Sect. 5.3 that makes
data chunk reordering decisions dynamically as and when
jobs are completed. In all our experiments, we observed that
the overall execution time using our custom scheduling al-
gorithm within Condor is only marginally higher than that
obtained from using the default scheduler, thereby show-
ing that our approach introduces only negligible overheads.
These experiments were carried out on the RI-MEMORY
cluster’ with Condor’s master node running our customized
scheduler. We carried out evaluations using multiple images
(ranging in size from 12 GB to 21 GB) that are characterized
by differences in their data (feature) content. We target user
queries with two kinds of QoS requirements: Requirement 1:
Maximize average confidence across all chunks in an image
within time t; Requirement 2: Given a confidence in classi-
fication threshold, maximize the number of finalized chunks
for an image within time t. These requirements can be met
by tuning combinations of one or more relevant accuracy-
trading parameters.

Tuning only the processing order parameter for re-
quirement 1 This is useful when users wish to maximize
average confidence across an image while processing all
chunks at the highest resolution, i.e. trading quality of result
for the overall image, but not the quality of the result for in-
dividual chunks. In such cases, the processing order
parameter can be tuned such that the Condor customized
scheduler prioritizes chunks that are likely to yield output
with higher (confidence/time) value at the maximum reso-
lution.

Figure 11 shows that a tuned parameter helps achieve a
higher average confidence at maximum resolution across all
chunks. For example, after 800 seconds, the tuned parame-
ter execution achieves an average confidence of 0.34 which
is greater than the 0.28 value achieved when no parameter

3Qur goal here is only to demonstrate our framework’s ability to exploit
performance-quality trade-offs, and not adaptability to heterogeneous
sets of resources. We note that this experiment could also be carried
out on the same testbed used for the PIQ application.

@ Springer

330

Cluster Comput (2010) 13: 315-333

0.55 T T T T —
) . No parameter funing ——
05 With tuning of 'processing order’ parameter

0.45 R

0.35 H R
0.3 —\ N o i
0.25]
0.2 R

0.15]

Average confidence at maximum resolution

01 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Processing Time (s)

Fig.11 Quality Improvement by tuning only the processing or-
der parameter

0.46 T T T T T
N ter tuning —
0.44 With tuning of ’processing order’ and ’resgll?t%%r%ea%mue%nrg —

Average confidence
o o o o
w w w 9 »
B (o] © S N

o
w
R

1000 2000 3000 _ 4000 5000 6000
Processing Time (s)

OoO—=

Fig. 12 Quality improvement by tuning the processing order
and resolution parameters

tuning is employed. This is because our customized sched-
uler tunes the processing order parameter to reorder
chunk execution in a manner that favors jobs corresponding
to chunks that yield higher confidence.

Tuning both the resolution and processing order
parameters for requirement 1 ~ This is useful when individ-
ual chunks can be processed at lower resolutions so long
as the resulting confidence exceeds a user-specified thresh-
old. Figure 12 shows how parameter tuning helps achieve
higher average confidence at all points during the execution.
Each chunk is iteratively processed until only that target res-
olution at which the confidence exceeds a threshold (set to
0.25 here). Our custom scheduler prioritizes chunks that are
likely to yield output with higher (%) value at lower
resolutions.

Results obtained for other test images exhibited similar
improvement trends and also showed that our customized
scheduling extensions to Condor scale well with data size.

@ Springer

12000

' ' ' N rameter tunjing —
With tuning of ’processing order’ and ’?egcﬁu%onep%rar%eteg —

10000 1
8000 -]
6000 - 1

4000 - R

Number of finalized chunks

2000

T
L

0 1000 2000 3000 _ 4000 5000 6000
Processing Time (s)

Fig. 13 Improvement in number of finalized tiles by tuning parameters

Tuning both the resolution and processing or-
der parameters for requirement 2 Here, the customized
scheduler prioritizes jobs corresponding to chunks that are
likely to get finalized at lower resolutions. Figure 13 shows
how parameter tuning in our framework yields an increased
number of finalized chunks at every point in time during the
execution. The improvement for this particular case appears
very slight because the confidence in classification thresh-
old was set relatively high as compared to the average confi-
dence values generated by the classify component, and this
gave our custom scheduler lesser optimization opportunities
via reordering.

Scalability 1In this set of experiments (carried out as part
of requirement 2), we scaled the number of worker nodes in
our Condor pool from 16 to 48. Our goal here was to de-
termine if our custom scheduler could function efficiently
when more worker nodes are added to the system. Figure 14
shows how the time taken to process a certain number of
chunks in an image halves as we double the number of work-
ers. Hence, the scheduler performance scales linearly when
an increasing number of resources need to be managed.

7 Summary and conclusions

Many scientific workflow applications are data and/or comp-
ute-intensive. The performance of such applications can be
improved by adjusting component-level parameters as well
as by applying workflow-level optimizations. In some ap-
plication scenarios, performance gains can be obtained by
sacrificing accuracy of the analysis, so long as some mini-
mum quality requirements are met. Our work has introduced
a framework that integrates a suite of workflow description,
mapping and scheduling, and distributed data processing
subsystems in order to provide support for parameter-based

Cluster Comput (2010) 13: 315-333

331

14000 T T

50% of chunks ———
All chunks

12000 R

10000 R

8000 R

Execution time

6000 | R

4000 R

2000 . .
16 32 48

Number of worker nodes

Fig. 14 Scalability with number of worker nodes

performance optimizations along multiple dimensions of the
parameter space.

Our current implementation of the proposed framework
provides support for users to manually express the values of
the various performance parameters in order to improve per-
formance. We have customized the job scheduling module
of the Condor system to enable trade-offs between accuracy
and performance in our target applications. The experimen-
tal evaluation of the proposed framework shows that adjust-
ments of accuracy-preserving and accuracy-trading parame-
ters lead to performance gains in two real applications. The
framework also achieves improved responses to queries in-
volving quality of service requirements. As a future work,
we will incorporate techniques to search the parameter space
in a more automated manner. We target application scenar-
ios in which a large number of data elements or a large
dataset that can be partitioned into a number of chunks are
processed in a workflow. In such cases, a subset of the data
elements could be used to search for suitable parameter val-
ues during workflow execution and subsequently refining
the choice of parameter values based on feedback obtained
from previous runs.

Acknowledgements This research was supported in part by
the National Science Foundation under Grants #CNS-0403342,
#CNS-0426241, #CSR-0509517, #CSR-0615412, #ANI-0330612,
#CCF-0342615, #CNS-0203846, #ACI-b0130437, #CNS-0615155,
#CNS-0406386, and Ohio Board of Regents BRTTC #BRTTO02-
0003 and AGMT TECH-04049 and NIH grants #R24 HL085343,
#R0O1 LM009239, and #79077CBS10.

References

1. Acher, M., Collet, P, Lahire, P.: Issues in managing variability
of medical imaging grid services. In: MICCAI-Grid Workshop
(MICCAI-Grid) (2008)

2. Beynon, M.D., Kurc, T., Catalyurek, U., Chang, C., Sussman, A.,
Saltz, J.: Distributed processing of very large datasets with Data-
Cutter. Parallel Comput. 27(11), 1457-1478 (2001)

10.

11.

13.

14.

15.

16.

17.

18.

Brandic, I., Pllana, S., Benkner, S.: Specification, planning, and
execution of QoS-aware Grid workflows within the Amadeus en-
vironment. Concurr. Comput. Pract. Exp. 20(4), 331-345 (2008)
Chang, F., Karamcheti, V.: Automatic configuration and run-time
adaptation of distributed applications. In: High Performance Dis-
tributed Computing, pp. 11-20 (2000)

Chen, C., Chame, J., Hall, M.W.: Combining models and guided
empirical search to optimize for multiple levels of the memory
hierarchy. In: International Symposium on Code Generation and
Optimization (2005)

Chiu, D., Deshpande, S., Agrawal, G., Li, R.: Cost and accuracy
sensitive dynamic workflow composition over grid environments.
In: 9th IEEE/ACM International Conference on Grid Computing,
pp. 9-16 (2008)

Chow, S.K., Hakozaki, H., Price, D.L., MacLean, N.A.B., Deer-
inck, T.J., Bouwer, J.C., Martone, M.E., Peltier, S.T., Ellisman,
M.H.: Automated microscopy system for mosaic acquisition and
processing. J. Microsc. 222(2), 76-84 (2006)

Chung, I.H., Hollingsworth, J.: A case study using automatic per-
formance tuning for large-scale scientific programs. In: 15th IEEE
International Symposium on High Performance Distributed Com-
puting, pp. 45-56 (2006)

Chung, I.H., Hollingsworth, J.K.: Using information from prior
runs to improve automated tuning systems. In: SC *04: Proceed-
ings of the 2004 ACM/IEEE Conference on Supercomputing,
p. 30. IEEE Computer Society, Washington (2004)

Cortellessa, V., Marinelli, F., Potena, P.: Automated selection of
software components based on cost/reliability tradeoff. In: Soft-
ware Architecture, Third European Workshop, EWSA 2006. Lec-
ture Notes in Computer Science, vol. 4344. Springer, Berlin
(2006)

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil,
S., Su, M.H., Vahi, K., Livny, M.: Pegasus: Mapping scientific
workflows onto the grid. In: Lecture Notes in Computer Science:
Grid Computing, pp. 11-20 (2004)

Gil, Y., Ratnakar, V., Deelman, E., Mehta, G., Kim, J.: Wings for
Pegasus: Creating large-scale scientific applications using seman-
tic representations of computational workflows. In: Proceedings
of the 19th Annual Conference on Innovative Applications of Ar-
tificial Intelligence (IAAI) (2007)

Glatard, T., Montagnat, J., Pennec, X.: Efficient services composi-
tion for grid-enabled data-intensive applications. In: Proceedings
of the IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC’06), Paris, France, 19 June 2006
Kong, J., Sertel, O., Shimada, H., Boyer, K., Saltz, J., Gurcan, M.:
Computer-aided grading of neuroblastic differentiation: Multi-
resolution and multi-classifier approach. In: IEEE International
Conference on Image Processing, ICIP 2007, vol. 5, pp. 525-528
(2007)

Kumar, V., Rutt, B., Kure, T., Catalyurek, U., Pan, T., Chow, S.,
Lamont, S., Martone, M., Saltz, J.: Large-scale biomedical image
analysis in grid environments. IEEE Trans. Inf. Technol. Biomed.
12(2), 154-161 (2008)

Kumar, V.S., Rutt, B., Kurc, T., Catalyurek, U., Saltz, J., Chow,
S., Lamont, S., Martone, M.: Large image correction and warp-
ing in a cluster environment. In: SC *06: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, p. 79. ACM, New
York (2006)

Kumar, V.S., Narayanan, S., Kur¢, T.M., Kong, J., Gurcan, M.N.,
Saltz, J.H.: Analysis and semantic querying in large biomedical
image datasets. IEEE Comput. 41(4), 52-59 (2008)

Lera, 1., Juiz, C., Puigjaner, R.: Performance-related ontologies
and semantic web applications for on-line performance assess-
ment intelligent systems. Sci. Comput. Program. 61(1), 27-37
(2006)

@ Springer

332

Cluster Comput (2010) 13: 315-333

19. Ludischer, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E.,
Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow man-
agement and the Kepler system: Research articles. Concurr. Com-
put. Pract. Exp. 18(10), 1039-1065 (2006)

20. Nelson, Y.L.: Model-guided performance tuning for application-
level parameters. Ph.D. Dissertation, University of Southern Cali-
fornia (2009)

21. Norris, B., Ray, J., Armstrong, R., Mcinnes, L.C., Shende, S.:
Computational quality of service for scientific components. In:
Proceedings of the International Symposium on Component-based
Software Engineering (CBSE7), pp. 264-271. Springer, Berlin
(2004)

22. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Green-
wood, M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.:
Taverna: a tool for the composition and enactment of bioinformat-
ics workflows. Bioinformatics 20(17), 3045-3054 (2004)

23. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in
practice: the Condor experience: Research articles. Concurr. Com-
put. Pract. Exp. 17(2—4), 323-356 (2005)

24. Truong, H.L., Dustdar, S., Fahringer, T.: Performance metrics and
ontologies for grid workflows. Future Gener. Comput. Syst. 23(6),
760-772 (2007)

25. Wolski, R., Spring, N., Hayes, J.: The network weather service:
a distributed resource performance forecasting service for meta-
computing. J. Future Gener. Comput. Syst. 15, 757-768 (1999)

26. Zhou, J., Cooper, K., Yen, L.LL.: A rule-based component cus-
tomization technique for QoS properties. In: Eighth IEEE Inter-
national Symposium on High Assurance Systems Engineering,
pp- 302-303 (2004)

Vijay S. Kumar is a Ph.D. can-
didate in computer science at The
Ohio State University where he
works as a graduate research asso-
ciate. His research interests include
developing techniques and large-
scale software systems to assist
data-intensive scientific applications
with particular emphasis on scien-
tific workflows execution in distrib-
uted computing environments. Vijay
received a B.E. in computer science
and an M.Sc. in chemistry from the
Birla Institute of Technology and
Science, Pilani, India in 2003.

Tahsin Kurc received his Ph.D. in
computer science from Bilkent Uni-
versity, Turkey, in 1997 and his B.S.
in electrical and electronics engi-
neering from Middle East Technical
University, Turkey, in 1989. He was
a Postdoctoral Research Associate
at the University of Maryland from
1997 to 2000. Before coming to
Emory, he was a Research Assistant
Professor in the Biomedical Infor-
matics Department at the Ohio State
University. Dr. Kurc’s research ar-
eas include high-performance data-
intensive computing, runtime systems for efficient storage and process-
ing of very large scientific datasets, domain decomposition methods
for unstructured domains, parallel algorithms for scientific and engi-
neering applications, and scientific visualization on high-performance
machines.

@ Springer

Varun Ratnakar is a Research Pro-
grammer at the USC/Information
Sciences Institute. Varun got a Mas-
ter’s degree from USC and a Bach-
elor’s degree from the Delhi Col-
lege of Engineering. His interests
include Computational Workflows,
Knowledge Representation, and
Linked Data (www.isi.edu/~varunr,
varunr @isi.edu).

Jihie Kim is a Research Assistant
Professor in Computer Science at
the University of Southern Cali-
fornia, a Computer Scientist at the
USC/Information Sciences Insti-
tute. Dr. Kim received a Ph.D. from
the University of Southern Califor-
nia and a master’s and a bache-
lor’s degrees from the Seoul Na-
tional University. Her current inter-
ests include knowledge-based ap-
proaches to developing workflow
systems, intelligent user interfaces
and pedagogical tools for online dis-
cussions (http://www.isi.edu/~jihie,
jihie@isi.edu).

Gaurang Mehta is a Research Programmer at USC Information Sci-
ences Institute. He is a member of the Collaborative Computing Group,
Advanced Systems Division at the Information Sciences Institute and
works on the Pegasus Project (http://pegasus.isi.edu). He received a
M.S. in Electrical Engineering from University of Southern California
and a B.E. in Electronics Engineering from Mumbai University, India.
He is currently the co-developer of Pegasus and the lead developer on
the Ensemble Workflow Manager. Gaurang has been a member of the
IEEE for the last 11 years.

Karan Vahi is a Research Program-
mer at USC Information Sciences
Institute. He is a member of the
Advanced Systems Division at the
Information Sciences Institute and
works on the Pegasus Project. He re-
ceived a M.S. in Computer Science
from University of Southern Cali-
fornia and a B.E. in Computer Engi-
neering from Thapar University, In-
dia. He is currently the lead devel-
oper on the Pegasus project.

http://www.isi.edu/~varunr
http://www.isi.edu/~jihie
http://pegasus.isi.edu

Cluster Comput (2010) 13: 315-333

333

Yoonju Lee Nelson recently re-
ceived Ph.D. in computer science
from University of Southern Cali-
fornia in August, 2009. Her research
interests include compiler optimiza-
tion and performance tuning on par-
allel computers. She also received
her M.S. in computer science from
University of Southern California,
in 2001 and her B.S. in computer
science from University of Ulsan,
South Korea, in 1994.

P. Sadayappan is a Professor of
Computer Science and Engineering
at the Ohio State University. His
research centers around program-
ming models, compilers and run-
time systems for parallel comput-
ing, with special emphasis on high-
performance scientific computing.

Ewa Deelman is a Research Asso-
ciate Professor at the USC Com-
puter Science Department and a
Project Leader at the USC Infor-
mation Sciences Institute. Dr. Deel-
man’s research interests include the
design and exploration of collab-
orative, distributed scientific envi-
ronments, with particular empha-
sis on workflow management as
well as the management of large
amounts of data and metadata. At
ISI, Dr. Deelman is leading the Pe-
gasus project, which designs and
implements workflow mapping
techniques for large-scale workflows running in distributed environ-
ments. Dr. Deelman received her Ph.D. from Rensselaer Polytechnic
Institute in Computer Science in 1997 in the area of parallel discrete
event simulation.

A

Yolanda Gil is Associate Division
Director at the Information Sci-
ences Institute of the University of
Southern California, and Research
Associate Professor in the Com-
puter Science Department. She re-
ceived her M.S. and Ph.D. degrees
in Computer Science from Carnegie
Mellon University. Dr. Gil leads a
group that conducts research on var-
ious aspects of Interactive Knowl-
edge Capture. Her research interests
include intelligent user interfaces,
knowledge-rich problem solving,
scientific and grid computing, and
the semantic web. An area of recent interest is large-scale distributed
data analysis through knowledge-rich computational workflows. She
was elected to the Council of the American Association of Artificial
Intelligence (AAAI), and was program co-chair of the AAAI confer-
ence in 2006. She serves in the Advisory Committee of the Computer
Science and Engineering Directorate of the National Science Founda-
tion.

Mary Hall (Ph.D. 1991, Rice Uni-
versity) joined the School of Com-
puting at University of Utah as an
associate professor in 2008. Her re-
search focuses on compiler-based
autotuning technology to exploit
performance-enhancing features of
a variety of computer architectures,
investigating application domains
that include biomedical imaging,
molecular dynamics and signal
processing. Prior to joining Univer-
sity of Utah, Prof. Hall held posi-
tions at University of Southern Cal-
ifornia, Caltech, Stanford and Rice
University.

Joel Saltz is Director of the Cen-
ter for Comprehensive Informat-
ics, Professor in the Departments of
Pathology, Biostatistics and Bioin-
formatics, and Mathematics and
Computer Science at Emory Univer-
sity, Chief Medical Information Of-
ficer at Emory Healthcare, Adjunct
Professor of Computational Science
and Engineering at Georgia Tech,
Georgia Research Alliance Eminent
Scholar in Biomedical Informatics,
and Georgia Cancer Coalition Dis-
tinguished Cancer Scholar. Prior to
joining Emory, Dr. Saltz was Pro-
fessor and Chair of the Department of Biomedical Informatics at The
Ohio State University (OSU) and Davis Endowed Chair of Cancer at
OSU. He served on the faculty of Johns Hopkins Medical School, Uni-
versity of Maryland College Park and Yale University in departments
of Pathology and Computer Science. He received his M.D. and Ph.D.
(computer science) degrees at Duke University and is a board certified
Clinical Pathologist trained at Johns Hopkins University.

@ Springer

	Parameterized specification, configuration and execution of data-intensive scientific workflows
	Abstract
	Introduction
	Related work
	Motivating applications
	Application 1: Pixel Intensity Quantification (PIQ)
	Application 2: Neuroblastoma Classification (NC)

	Performance optimizations
	Accuracy-preserving parameters
	Chunking strategy
	Component configuration
	Task granularity and execution strategy

	Accuracy-trading parameters
	Chunking strategy
	Data resolution
	Processing order

	Workflow composition and execution framework
	Description module (DM)
	Domain-specific data ontology

	Execution module (EM)
	Pegasus workflow management system
	Condor condor04
	DataCutter beynon01distributed
	ECO compiler

	Trade-off module (TM)
	Framework application

	Experimental evaluation
	Accuracy-preserving parameters
	Effects of chunksize
	Effects of task granularity
	Effects of parameter tuning for individual components

	Accuracy-trading parameters
	Tuning only the processing order parameter for requirement 1
	Tuning both the resolution and processing order parameters for requirement 1
	Tuning both the resolution and processing order parameters for requirement 2
	Scalability

	Summary and conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

