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Abstract—Large-scale applications expressed as scientific
workflows are often grouped into ensembles of inter-related
workflows. In this paper, we address a new and important
problem concerning the efficient management of such ensembles
under budget and deadline constraints on Infrastructure- as-a-
Service (IaaS) clouds. We discuss, develop, and assess algorithms
based on static and dynamic strategies for both task schedul-
ing and resource provisioning. We perform the evaluation via
simulation using a set of scientific workflow ensembles with a
broad range of budget and deadline parameters, taking into
account uncertainties in task runtime estimations, provisioning
delays, and failures. We find that the key factor determining
the performance of an algorithm is its ability to decide which
workflows in an ensemble to admit or reject for execution. Our
results show that an admission procedure based on workflow
structure and estimates of task runtimes can significantly improve
the quality of solutions.

I. INTRODUCTION

Scientific workflows, usually represented as Directed
Acyclic Graphs (DAGs), are an important class of applications
that lead to challenging problems in resource management
on grid and utility computing systems. Workflows for large
computational problems are often composed of several inter-
related workflows grouped into ensembles. Workflows in an
ensemble typically have a similar structure, but they differ in
their input data, number of tasks, and individual task sizes.

There are many applications that require scientific workflow
ensembles. CyberShake [1], for example, uses ensembles to
generate seismic hazard maps. Each workflow in a CyberShake
ensemble generates a hazard curve for a particular geographic
location, and several hazard curves are combined to create a
hazard map. In 2009 CyberShake was used to generate a map
that required an ensemble of 239 workflows. Similarly, users
of Montage [2] often need several workflows with different
parameters to generate a set of image mosaics that can be
combined into a single, large mosaic. The Galactic Plane
ensemble, which generates several mosaics of the entire sky in
different wavelengths, consists of 17 workflows, each of which
contains 900 sub-workflows. Another ensemble example is the
Periodograms application [3], which searches for extrasolar
planets by detecting periodic dips in the light intensity of
their host star. Due to the large scale of the input data, this
application is often split up into multiple batches processed by
different workflows. Additional workflows are created to run
the analysis using different parameters. A recent analysis of
Kepler satellite data required three ensembles of 15 workflows.

Workflows in an ensemble may differ not only in their
parameters, but also in their priority. For example, in Cyber-
Shake some sites may be in heavily populated areas or in
strategic locations such as power plants, while others may be
less important. Scientists typically prioritize the workflows in
such an ensemble so that important workflows are finished
first. This enables them to see critical results early, and helps
them to choose the most important workflows when the time
and financial resources available for computing are limited.

Infrastructure-as-a-Service (IaaS) clouds offer the ability
to provision resources on-demand according to a pay-per-use
model. These systems are regarded by the scientific commu-
nity as a potentially attractive source of low-cost computing
resources [4], [5]. In contrast to clusters and grids, which
typically offer best-effort quality of service, clouds give more
flexibility in creating a controlled and managed computing
environment. Clouds provide the ability to adjust resource
capacity according to the changing demands of the applica-
tion, often called auto-scaling. However, giving users more
control also requires the development of new methods for task
scheduling and resource provisioning. Resource management
decisions required in cloud scenarios not only have to take
into account performance-related metrics such as workflow
makespan or resource utilization, but must also consider bud-
get constraints, since the resources from commercial clouds
usually have monetary costs associated with them [6].

In this paper, we aim to gain insight into resource manage-
ment challenges when executing scientific workflow ensembles
on clouds. We address a new and important problem of maxi-
mizing the number of completed workflows from an ensemble
under both budget and deadline constraints. The motivation for
this work is to answer the fundamental question of concern to
a researcher: How much computation can be completed given
the limited budget and timeframe of a research project?

The main contributions of this paper are:
• we define the problem of scheduling prioritized workflow

ensembles under budget and deadline constraints,
• we analyze and develop several dynamic (online) and

static (offline) algorithms for task scheduling and re-
source provisioning that rely on workflow structure infor-
mation (critical paths and workflow levels) and estimates
of task runtimes,

• we evaluate these algorithms using a simulator based
on CloudSim [7], which models the infrastructure and



the application,taking into account uncertainties in task
runtime estimates, provisioning delays, and failures,

• we discuss the performance of the algorithms on a set of
synthetic workflow ensembles based on important, real
scientific applications, using a broad range of different
application scenarios and varying constraint values.

II. RELATED WORK

General policy and rule-based approaches to dynamic pro-
visioning (e.g. Amazon Auto Scaling [8] and RightScale [9])
allow the size of a resource pool to be adjusted based on
infrastructure and application metrics. A typical infrastructure-
specific metric is system load, whereas application-specific
metrics include response time and length of a task or of a
request queue. It is possible to set thresholds and limits to
tune the behavior of these autoscaling systems, but no support
for complex applications is provided. Policy-based approaches
for scientific workloads (e.g. [10], [11]) also allow to scale the
cloud resource pool or to extend the capabilities of clusters
using cloud-burst techniques. Our approach is different in that
we consider workflows, while policy based approaches typi-
cally consider bags of independent tasks or unpredictable batch
workloads. This enables us to take advantage of workflow-
aware heuristics that cannot be applied to independent tasks.

Our work is related to the strategies for deadline-constrained
cost-minimization workflow scheduling, developed for utility
grid systems. However, our problem is different from [12]
and [13] in that we consider ensembles of workflows in IaaS
clouds, which allow one to provision resources on a per-
hour billing model, rather than utility grids, which allow one
to choose from a pool of existing resources with a per-job
billing model. Our work is also different from cloud-targeted
autoscaling solution [14] in that we consider ensembles of
workflows rather than unpredictable workloads containing
workflows. We also consider budget constraints rather than
cost minimization as a goal. In other words, we assume that
there is more work to be done than the available budget, so
some work must be rejected. Therefore, cost is not something
we optimize (i.e. an objective), but rather a constraint.

This work is related to bi-criteria scheduling and multi-
criteria scheduling of workflows [15], [16], [17]. These ap-
proaches are similar to ours in that we have two scheduling
criteria: cost and makespan. The challenge in multi-criteria
scheduling is to derive an objective function that takes into
account all of the criteria. In our case one objective (amount
of work completed) is subject to optimization, whereas time
and cost are treated as constraints. Other approaches [18],
[19] use metaheuristics that usually run for a long time before
producing good results, which makes them less useful in the
scenarios we consider in this paper. Our work can also be
regarded as an extension of the budget-constrained workflow
scheduling [20] in the sense that we are dealing with workflow
ensembles and the deadline constraint is added.

III. PROBLEM DESCRIPTION

Resource Model We assume a resource model similar to
Amazon’s Elastic Compute Cloud (EC2), where virtual ma-
chine (VM) instances may be provisioned on-demand and
are billed by the hour, with partial hours being rounded up.
Although there may be heterogeneous VM types with different
amounts of CPU, memory, disk space, and I/O, for this paper
we focus on a single VM type because we assume that for most
applications there will typically be only one or two VM types
with the best price/performance ratio for the application [21].
We assume that a submitted task has exclusive access to a VM
instance and that there is no preemption. We also assume that
there is a delay between the time that a new VM instance is
requested and when it becomes available to execute tasks.

Application Model The target applications are ensembles
of scientific workflows that can be modeled as DAGs, where
the nodes in the graph represent computational tasks, and the
edges represent data- or control-flow dependencies between
the tasks. We assume that runtime estimates for the workflow
tasks are known, but that they are not perfect and may vary
based on a uniform distribution of ±p%.

This study uses synthetic workflows that were generated
using historical data from real applications [22]. The applica-
tions come from a wide variety of domains including: bioin-
formatics (Epigenomics, SIPHT: sRNA identification proto-
col using high-throughput technology), astronomy (Montage),
earthquake science (CyberShake), and physics (LIGO). The
synthetic workflows were generated using code developed
in [23], with task runtimes based on distributions gathered
from running real workflows.

Although workflows are often data-intensive, the algorithms
described here do not currently consider the size of input and
output data when scheduling tasks. Instead, it is assumed that
all workflow data is stored in a shared cloud storage system,
such as Amazon S3, and that intermediate data transfer times
are included in task runtimes. It is also assumed that data
transfer times between the shared storage and the VMs are
equal for different VMs so that task placement decisions do
not impact the runtime of the tasks.

We assume that each workflow in an ensemble is given a
numeric priority that indicates how important the workflow is
to the user. As such, the priorities indicate the utility function
of the user. These priorities are absolute in the sense that
completing a workflow with a given priority is more valuable
than completing all other workflows in the ensemble with
lower priorities combined. The goal of the workflow ensemble
scheduling and cloud provisioning problem is to complete as
many high-priority workflows as possible given a fixed budget
and deadline. Only workflows for which all tasks are finished
by the deadline are considered to be complete—partial results
are not usable in this model.

Performance Metric In order to precisely define the objec-
tive of the algrithms it is necessary to introduce a metric that
can be used to score the performance of the different algo-
rithms on a given problem (ensemble, budget, and deadline).



Algorithm 1 Dynamic provisioning algorithm for DPDS
Require: c: consumed budget; b: total budget; d: deadline; p: price; t: current

time; uh: upper utilization threshold; ul: lower utilization threshold;
vmax: maximum number of VMs

1: procedure PROVISION
2: VR ← set of running VMs
3: VC ← set of VMs completing billing cycle
4: VT ← ∅ . set of VMs to terminate
5: nT ← 0 . number of VMs to terminate
6: if b− c < |VC | ∗ p or t > d then
7: nT ← |VR| − b(b− c)/pc
8: VT ← select nT VMs to terminate from VC

9: TERMINATE(VT )
10: else
11: u← current VM utilization
12: if u > uh and |VR| < vmax ∗NV M then
13: START(new VM )
14: else if u < ul then
15: VI ← set of idle VMs
16: nT ← d|VI |/2e
17: VT ← select nT VMs to terminate from VI

18: TERMINATE(VT )
19: end if
20: end if
21: end procedure

The simplest approach is to count the number of workflows in
the ensemble that each algorithm is able to complete within the
budget before the deadline, but this metric does not account
for the priority-based utility function specified by the user.
Using the counting approach, a less efficient algorithm may
be able to complete a large number of low-priority workflows
by executing the smallest workflows first. In order to account
for the priority, we use an exponential scoring defined as:

Score(e) =
∑

w ∈ Completed(e)

2−Priority(w)

where Completed(e) is the set of workflows in ensemble
e that was completed by the algorithm, and Priority(w)
is the priority of workflow w such that the highest-priority
workflow has Priority(w) = 0, the next highest workflow
has Priority(w) = 1, and so on. This exponential scoring
function gives the highest priority workflow a score that is
higher than all the lower- priority workflows combined:

2−p >
∑

i = p+1, ...

2−i

IV. ALGORITHMS

This section describes three algorithms that were developed
to schedule and provision resources for ensembles of work-
flows on the cloud under budget and deadline constraints.

A. Dynamic Provisioning Dynamic Scheduling (DPDS)

DPDS is an online algorithm that provisions resources and
schedules tasks at runtime. It consists of two main parts: a
provisioning procedure, and a scheduling procedure.

DPDS’ provisioning procedure is based on resource utiliza-
tion. DPDS starts with a fixed number of resources calculated
based on the available time and budget, and adjusts the number
of resources according to how well they are utilized by the

Algorithm 2 Priority-based scheduling algorithm for DPDS
1: procedure SCHEDULE
2: P ← empty priority queue
3: IdleV Ms← set of idle VMs
4: for root task t in all workflows do
5: INSERT(t, P )
6: end for
7: while deadline not reached do
8: while IdleV Ms 6= ∅ and P 6= ∅ do
9: v ← SELECTRANDOM(IdleV Ms)

10: t← POP(P )
11: SUBMIT(t, v)
12: end while
13: Wait for task t to finish on VM v
14: Update P with ready children of t
15: INSERT(v, IdleV Ms)
16: end while
17: end procedure

application. Given a budget in dollars b, deadline in hours d,
and the hourly price of a VM in dollars p, it is possible to
calculate the number of VMs, NVM , to provision so that the
entire budget is consumed before the deadline:

NVM = db/(d ∗ p)e (1)

DPDS provisions NVM VMs at the start of the ensemble
execution, then it periodically computes resource utilization
using the percentage of idle VMs over time and adjusts the
number of VMs if the utilization is above or below given
thresholds. Because it is assumed that VMs are billed by the
hour, DPDS only considers VMs that are approaching their
hourly billing cycle when deciding which VMs to terminate.
This dynamic provisioning algorithm is shown in Algorithm 1.

The set of VMs completing their billing cycle is determined
by both the provisioner interval, and the termination delay
of the provider. This guarantees that VMs can be terminated
before they start the next billing cycle and prevents the
budget from being overrun. The VMs terminated in line 9 of
Algorithm 1 are the ones that would overrun the budget if not
terminated in the current provisioning cycle. The VMs termi-
nated in line 18 are chosen to increase the resource utilization
to the desired threshold. In order to prevent instances that have
already been paid for from being terminated too quickly, no
more than half of the idle resources are terminated during each
provisioning cycle. To avoid an uncontrolled increase in the
number of instances, which may happen in the case of highly
parallel workflows, the provisioner will not start a new VM
if the number of running VMs is greater than the product of
NVM (from Equation 1) and an autoscaling parameter, vmax.
Unless otherwise specified, vmax is assumed to be 1.

In order to schedule individual workflow tasks onto avail-
able VMs, DPDS uses the dynamic, priority-based scheduling
procedure shown in Algorithm 2. Initially, the ready tasks from
all workflows in the ensemble are added to a priority queue
based on the priority of the workflow to which they belong.
If there are idle VMs available, and the priority queue is not
empty, the next task from the priority queue is submitted to an
arbitrarily chosen idle VM. The process is repeated until there
are no idle VMs or the priority queue is empty. The scheduler



Algorithm 3 Workflow admission algorithm for WA-DPDS
Require: w: workflow; b: budget; c: current cost
1: procedure ADMIT(w, b, c)
2: rn ← b− c . Budget remaining for new VMs
3: rc ←cost committed to VMs that are running
4: ra ←cost to complete workflows previously admitted
5: rm ← 0.1 . Safety margin
6: rb ← rn + rc − ra − rm . Budget remaining
7: cw ← ESTIMATECOST(w)
8: if cw < rb then return TRUE
9: else return FALSE

10: end if
11: end procedure

then waits for a task to finish, adds its ready children to the
priority queue, marks the VM as idle, and the entire process
repeats until the deadline is reached.

DPDS guarantees that tasks from lower priority workflows
are always deferred when higher-priority tasks are available,
but lower-priority tasks can still occupy idle VMs when higher-
priority tasks are not available. Since there is no preemption,
long-running low-priority tasks may delay the execution of
higher-priority tasks. In addition, tasks from low priority
workflows may be executed even though there is no chance
that those workflows will be completed within the current
budget and deadline. Fig. 1a shows an example schedule
generated using the DPDS algorithm. The figure illustrates
how tasks from lower priority workflows backfill idle VMs
when tasks from higher priority workflows are not available.

B. Workflow-Aware DPDS (WA-DPDS)

DPDS does not use any information about the structure
of the workflows in the ensemble when scheduling tasks. It
does not consider whether a lower priority task belongs to
a workflow that will never be able to complete given the
current budget and deadline. As a result, DPDS may start lower
priority tasks just to keep VMs busy that will end up delaying
higher priority tasks later on, making it less likely that higher
priority workflows will be able to finish.

The Workflow-Aware DPDS (WA-DPDS) algorithm extends
DPDS by introducing a workflow admission procedure, which
is invoked whenever WA-DPDS sees the first task of a new
workflow at the head of the priority queue (i.e. when no
other tasks from the workflow have been scheduled yet).
The admission procedure— shown in Algorithm 3—estimates
whether there is enough budget remaining to admit the new
workflow; if there is not, then the workflow is rejected and its
tasks are removed from the queue. WA-DPDS compares the
current cost (consumed budget) and remaining budget, taking
into account the cost of currently running VMs, and the cost
of workflows that have already been admitted. In addition,
it adds a small safety margin of $0.10 (10% of the compute
hour cost) to avoid going over budget. We found the admission
procedure useful not only to prevent low-priority workflows
from delaying high-priority ones, but also to reject large and
costly workflows that would overrun the budget and admit
smaller workflows that can efficiently utilize idle resources.

Algorithm 4 Ensemble planning algorithm for SPSS
Require: W : workflow ensemble; b: budget; d: deadline
Ensure: Schedule as much of W as possible given b and d
1: procedure PLANENSEMBLE(W, b, d)
2: P ← ∅ . Current plan
3: A← ∅ . Set of admitted DAGs
4: for w in W do
5: P ′ ← PLANWORKFLOW(w,P, d)
6: if Cost(P ′) ≤ b then
7: P ← P ′ . Accept new plan
8: A← A + w . Admit w
9: end if

10: end for
11: return P,A
12: end procedure

C. Static Provisioning Static Scheduling (SPSS)

The previous dynamic (online) algorithms make provision-
ing and scheduling decisions at runtime. By contrast, the SPSS
algorithm creates a provisioning and scheduling plan before
running any workflow tasks. This enables SPSS to start only
those workflows that it knows can be completed given the
deadline and budget constraints, and eliminates any waste that
may be allowed by the dynamic algorithms. However, the
disadvantage of SPSS is that it is sensitive to dynamic changes
in the environment (see Sections VI-C and VI-B).

Algorithm 4 shows how ensembles are planned in SPSS.
Workflows from the ensemble are considered in priority order.
For each workflow, SPSS attempts to build on top of the
current plan by provisioning VMs to schedule the tasks of
the workflow so that it finishes before the deadline with the
least possible cost. If the cost of the new plan is less than
the budget, then the new plan is accepted and the workflow is
admitted. If not, then the new plan is rejected and the process
continues with the next workflow in the ensemble. The idea is
that, if each workflow can be completed by the deadline with
the lowest possible cost, then the number of workflows that
can be completed within the given budget will be maximized.

To plan a workflow, the SPSS algorithm assigns sub-
deadlines to each individual task in the workflow, and then
schedules each task so as to minimize the cost of the task
while still meeting its assigned sub-deadline. If each task can
be completed by its deadline in the least expensive way, then
the cost of the entire workflow can be minimized without
exceeding the deadline. SPSS assigns sub-deadlines to each
task based on the slack time of the workflow, which is defined
as the amount of extra time that a workflow can extend its
critical path and still be completed by the ensemble deadline.
For a workflow w, the slack time of w is: ST (w) = d−CP (w)
where d is the deadline and CP (w) is the critical path of w.
We assume that CP (w) ≤ d, otherwise the workflow cannot
be completed by the deadline and must be rejected.

A task’s level is the length of the longest path between the
task and an entry task of the workflow:

Level(t) =

{
0, if Pred(t) = ∅
maxp∈Pred(t) Level(p) + 1, otherwise.



Algorithm 5 Workflow planning algorithm for SPSS
Require: w: workflow; P : current plan; d: deadline
Ensure: Create plan for w that minimizes cost and meets deadline d
1: procedure PLANWORKFLOW(w,P, d)
2: P ′ ← copy of P
3: DEADLINEDISTRIBUTION(w,d)
4: for t in w sorted by DL(t) do
5: v ← VM that minimizes cost and start time of t
6: if FinishT ime(t, v) < DL(t) then
7: Schedule(t,v)
8: else
9: Provision a new VM v

10: Schedule(t,v)
11: end if
12: end for
13: return P ′

14: end procedure

SPSS distributes the slack time of the workflow by level, so
that each level of the workflow gets a portion of the workflow’s
slack time proportional to the number of tasks in the level and
the total runtime of tasks in the level. The idea is that levels
containing many tasks and large runtimes should be given a
larger portion of the slack time so that tasks in those levels may
be serialized. Otherwise, many resources need to be allocated
to run all of the tasks in parallel, which may be more costly.

The slack time of a level l in workflow w is given by:

ST (l) = ST (w)

[(
α
N(l)

N(w)

)
+

(
(1− α) R(l)

R(w)

)]
where N(w) is the number of tasks in the workflow, N(l) is
the number of tasks in level l, R(w) is the total runtime of all
tasks in the workflow, R(w) is the total runtime of all tasks
in level l, and α is a parameter between 0 and 1 that causes
more slack time to be given to levels with more tasks (large
α) or more runtime (small α).

The deadline of a task t is then:

DL(t) = LST (t) +RT (t) + ST (Level(t))

where Level(t) is the level of t, RT (t) is the runtime of t,
and LST (t) is the latest start time of t determined by:

LST (t) =

{
0, if Pred(t) = ∅
maxp∈Pred(t)DL(p), otherwise.

Algorithm 5 shows how SPSS creates low-cost plans for
each workflow. The PLANWORKFLOW procedure first calls
DEADLINEDISTRIBUTION to assign sub-deadlines to tasks.
Then, PLANWORKFLOW schedules tasks onto VMs, allocating
new VMs when necessary. For each task in the workflow, the
least expensive slot is chosen to schedule the task so that it can
be completed by its deadline. VMs are allocated in blocks of
one billing cycle (one hour) regardless of the size of the task.
When computing the cost of scheduling a task on a given VM,
the algorithm considers idle slots in blocks that were allocated
for previous tasks to be free, while slots in new blocks cost
the full price of a billing cycle. For example, if a task has a
runtime of 10 minutes, and the price of a block is $1, then the
algorithm will either schedule the task on an existing VM that

Time

V
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Time

V
M

(b) SPSS

Fig. 1: Example schedules generated by the algorithms. Each
row is a different VM. Boxes are tasks colored by workflow.

has an idle slot larger than 10 minutes for a cost of $0, or it will
allocate a new block on an existing VM, or provision a new
VM, for a cost of $1. If the cost of slots on two different VMs
is equal, then the slot with the earliest start time is chosen. To
prevent too many VMs from being provisioned, the algorithm
always prefers to extend the runtime of existing VMs before
allocating new VMs.

An example schedule generated by SPSS (Fig. 1b) shows
how SPSS tends to start many workflows in parallel, running
each workflow over a longer period of time on only a few VMs
to minimize cost. In comparison, the dynamic algorithms tend
to run one workflow at a time across many VMs in parallel.

V. EVALUATION METHODS

A. Simulator

To evaluate and compare the three proposed algorithms, we
developed a cloud workflow simulator based on CloudSim [7].
Our simulation model consists of Cloud, VM and Work-
flowEngine entities. The Cloud entity starts and terminates
VM entities using an Amazon EC2-like API. VM entities sim-
ulate the execution of individual tasks, including randomized
variations in runtime. The WorkflowEngine entity manages the
scheduling of tasks and the provisioning of VMs based on the
chosen algorithm. We assume that the VMs have a single core
and execute tasks sequentially. The simulator reads workflow
description files in a modified version of the DAX format used
by the Pegasus Workflow Management System [24].

B. Workflow Ensembles

In order to evaluate the algorithms on a standard set of
workflows, we created randomized ensembles using workflows
available from the workflow generator gallery [23]. The gallery
contains synthetic workflows modeled using structures and
parameters that were taken from real applications. Ensembles
were created using synthetic workflows from five real applica-
tions: SIPHT, LIGO, Epigenomics, Montage and CyberShake.
For each application, workflows with 50, 100, 200, 300, 400,
500, 600, 700, 800, 900 and 1000 tasks were created. For each



workflow size, 20 different workflow instances were generated
using parameters and task runtime distributions from real
workflow traces. The total collection of synthetic workflows
contains 5 applications, 11 different workflow sizes, and 20
workflow instances, for a total of 1100 synthetic workflows.

Using this collection of workflows, we constructed five
different ensemble types: constant, uniform sorted, uniform
unsorted, Pareto sorted and Pareto unsorted. In the unsorted
ensembles, workflows of different sizes are mixed together
and the priorities are assigned randomly. For many applica-
tions, however, large workflows are more important to users
than small workflows because they represent more significant
computations. To model this, the sorted ensembles are sorted
by size, so that the largest workflows have the highest priority.

Constant ensembles contain workflows that all have the
same number of tasks. The number of tasks is chosen ran-
domly from the set of possible workflow sizes. Once the size is
determined, then N workflows of that size are chosen randomly
for the ensemble from the set of synthetic workflows.

Uniform ensembles contain workflows with sizes that are
uniformly distributed among the set of possible sizes. Each
workflow is selected by first randomly choosing the size of
the workflow and then randomly choosing a workflow of that
size from the set of synthetic workflows.

Pareto ensembles contain a small number of larger work-
flows and a large number of smaller workflows. Their sizes
are chosen according to a Pareto distribution. The distribution
was modified so that the number of large workflows (of size
≥ 900) is increased by a small amount to produce a “heavy-
tail”. This causes Pareto ensembles to have a slightly larger
number of large workflows, which reflects behavior commonly
observed in many computational workloads.

The number of workflows in an ensemble depends on the
particular application, but we assume that ensemble sizes are
on the order of between 10 and 100 workflows, typical of the
real applications we have examined (see Section I).

C. Experimental Parameters

In order to observe the interesting characteristics of the pro-
posed algorithms, for each ensemble, we selected ranges for
deadline and budget that cover a broad parameter space: from
tight constraints, where only a small number of workflows
can be completed, to more liberal constraints where all, or
almost all, of the workflows can be completed. We computed
constraint ranges based on the characteristics of each ensem-
ble. The budget constraints are calculated by identifying the
smallest budget required to execute one of the workflows in
the ensemble (MinBudget), and the smallest budget required
to execute all workflows in the ensemble (MaxBudget):

MinBudget = min
w ∈ e

Cost(w)

MaxBudget =
∑

w ∈ e

Cost(w)

This range—[MinBudget,MaxBudget]—is then divided
into equal intervals to determine the budgets to use in each

experiment. Similarly, the deadline constraints are calculated
by identifying the smallest amount of time required to execute
a single workflow in the ensemble (MinDeadline), which is the
length of the critical path for the workflow with the shortest
critical path, and by identifying the smallest amount of time
required to execute all workflows (MaxDeadline), which is the
sum of the critical paths of all the workflows:

MinDeadline = min
w ∈ e

CriticalPath(w)

MaxDeadline =
∑

w ∈ e

CriticalPath(w)

This range—[MinDeadline,MaxDeadline]—is then di-
vided into equal intervals. By computing the budget and
deadline constraints in this way we ensure that the experiments
for each ensemble cover the most interesting area of the
parameter space for the ensemble.

In all the experiments we assumed that the VMs have a
price of $1 per VM-hour. This price was chosen to simplify
interpretation of results and should not affect the relative
performance of the different algorithms. In this study the
heterogeneity of the infrastructure is not relevant since we
assume that it is always possible to select a VM type that has
the best price to performance ratio for a given application [21].

All the experiments were run with maximum autoscaling
factor (vmax) set to 1.0 for DPDS and WA-DPDS. After ex-
perimenting with DPDS and WA-DPDS we found that, due to
the high parallelism of workflows used, the resource utilization
remains high enough without adjusting the autoscaling rate.
Based on experiments with the target applications, we set the
SPSS α parameter for deadline distribution to be 0.7, which
allocates slightly more time to levels with many tasks.

VI. DISCUSSION OF RESULTS

A. Relative Performance of Algorithms

The goal of the first experiment is to characterize the relative
performance of the proposed algorithms. This was done by
simulating the algorithms on many different ensembles and
comparing the scores computed using the performance metric
based on exponential scoring defined in Section III.

Fig. 2 shows the percentage of simulations for which each
algorithm achieved the highest score for a given ensemble
type. This experiment was conducted using all five applica-
tions, with all five types of ensembles. For each application
and ensemble type, 10 random ensembles of 50 workflows
each were created. Each ensemble was simulated with all
three algorithms using 10 budgets and 10 deadlines (1000
simulations per application, ensemble type, and algorithm).
The best scores percentage is computed by counting the
number of times that a given algorithm achieved the highest
score and dividing by 1000. Note that it is possible for multiple
algorithms to get the same high score (to tie), so the numbers
do not necessarily add up to 100%. The sum is much higher
than 100% in cases where the dynamic algorithms perform
relatively well because DPDS and WA-DPDS, which are very
similar algorithms, often get the same high score.
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Fig. 2: Percentage of high scores achieved by each algorithm on different ensemble types for all five applications. C =
Constant ensembles, PS = Pareto Sorted ensembles, PU = Pareto Unsorted ensembles, US = Uniform Sorted ensembles, and
UU = Uniform Unsorted ensembles.

There are several interesting things to notice about Fig. 2.
The first is that, in most cases, SPSS significantly outperforms
both dynamic algorithms (DPDS and WA-DPDS). This is
attributed to the fact that SPSS is able to make more intelligent
scheduling and provisioning decisions because it has the
opportunity to compare different options and choose the one
that results in the best outcome. In comparison, the dynamic
algorithms are online algorithms and are not able to project
into the future to weigh the outcomes of their choices.

The second thing to notice is that, for constant ensembles,
the dynamic algorithms perform significantly better relative to
SPSS compared to other ensemble types. This is a result of the
fact that, since all of the workflows are of approximately the
same size and shape, the choice of which workflow to execute
next has a smaller impact on the final result.

We can also see that the workflow-aware algorithms (WA-
DPDS and SPSS) both perform better in most cases than the
simple online algorithm that uses resource utilization alone to
make provisioning decisions (DPDS). This suggests that there
is a significant value in having information about the structure
and estimated runtime of a workflow when making scheduling
and provisioning decisions.

Finally, it is interesting that, for Montage and CyberShake,
the relative performance of SPSS is significantly less than it
is for other applications. We attribute this to the structure of
Montage and CyberShake. The workflows for both applica-
tions are very wide relative to their height, and both have very
short-running tasks, resulting in relatively short critical paths
that makes them look more like bag-of-tasks applications,
which are easier to execute than more structured applications.
DPDS and WA-DPDS are able to pack more of the tasks
into the available budget and deadline because there are a)
more choices for where to place the tasks, and b) the different
choices have a smaller impact on the algorithms’ ability to
execute the workflow within the constraints. In addition, the
short critical paths put SPSS at a disadvantage. Because of the
way SPSS assigns deadlines to individual tasks, it is prevented
from starting workflows late, which prevents it from packing
tasks into the idle VM slots at the end of the schedule.

B. Inaccurate Task Runtime Estimates
Both of the workflow-aware algorithms rely on estimates

of task runtimes to make better scheduling and provisioning
decisions. Our experience suggests that such assumption is

often reasonable, since we can obtain workflow performance
characteristics from preliminary runs [22], [24], [25]. Some
applications, like Periodograms [3] include even a performance
model that estimates task runtimes and automatically annotates
workflow description with these data. In practice, however,
these estimates are often inaccurate. Given inaccuate estimates,
the question is: How do errors in task runtime estimates
impact the performance of our scheduling and provisioning
algorithms? To examine this we introduced uniform errors in
the task runtime and observed the behavior of the algorithms in
terms of meeting the desired budget and deadline constraints.

In this experiment the actual runtime of each task is adjusted
in the simulation by adding a random error to the estimated
runtime of ±p%. Since the sampling is done uniformly, we
expect to get just as many overestimates as underestimates in
any given simulation.

Fig. 3 shows the results for estimate errors ranging from 0%
to 50%. The figure summarizes the outcome of an extensive
suite of 525,000 simulations (10 ensembles of 50 workflows x
5 applications x 5 distributions x 10 budgets x 10 deadlines x
7 error values x 3 algorithms). Box plots show the ratio of the
ensemble cost to budget, and of ensemble makespan to dead-
line. Whiskers on the plots indicate maximum and minimum
values. The ratio indicates whether the value (for example,
the simulated cost) exeeded the constraint (the budget). Values
greater than 1 indicate that the constraint was exceeded.

Fig. 3.a shows the ratio of simulated cost to budget. This
plot illustrates two important algorithm characteristics. First,
the dynamic algorithms very rarely exceeded the budget, even
with very large errors. This indicates that the dynamic algo-
rithms are able to adapt to uncertainties at runtime to ensure
that the constraints are not exceeded, even when the quality
of information available to them is low. Second, unlike the
dynamic algorithms, the static algorithm frequently exceeded
the budget constraint; by large amounts in some cases. This
is a result of the fact that the static algorithm makes all of its
decisions ahead of the execution and is not able to adapt to
changing circumstances.

Fig. 3.b shows the ratio of simulated makespan to budget.
Interestingly, the deadline constraint is rarely exceeded, even
in cases with very poor quality estimates. For the dynamic
algorithms this is a result of the fact that they can adapt
to poor estimates and stop submitting new tasks when the
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Fig. 3: Boxplots for budget and deadline ratios when runtime estimate error varies from ±0% to ±50% for all three algorithms.
Values greater than 1 indicate that the budget/deadline constraint was exceeded.

constraints are reached. Makespan is then computed as the
finish time of the last fully completed workflow from the
ensemble. For the static algorithm this is a result of the way
that SPSS schedules workflows, and not of a particularly clever
optimization. The SPSS algorithm tends to schedule workflows
early, using up the budget long before the deadline is reached.
This is a consequence of the deadline distribution function in
SPSS, which prevents workflows from starting late. This is
illustrated by the gantt chart in Fig. 1.b, which shows how
SPSS tends to pile up workflows at the beginning of the
timeline. As a result, when the runtime of the plan is increased
by introducing errors, the SPSS plan has some room to expand
without exceeding the deadline.

Note that the algorithms have not been changed to account
for inaccurate runtime estimates in this experiment. It is likely
that better performance could be achieved if the algorithms
were given a hint as to the accuracy of the task runtimes.
Investigating that optimization is left for future work.

C. Provisioning Delays

One important issue to consider when provisioning re-
sources in the cloud is the amount of time between when a
resource is requested, and when it actually becomes available
to the application. Typically these provisioning delays are on
the order of a few minutes, and are highly dependent upon the
cloud architecture and/or the size of the VM image [26].

We assume that resources are billed from the minute that
they are requested until they are terminated. As a result,
provisioning delays have an impact on both the cost and
makespan of an ensemble.

Fig. 4 shows the ratios of simulated values to constraints
when the provisioning delay is increased from 0 seconds up
to 15 minutes. The figure summarizes a suite of 105,000

simulations (10 ensembles of 50 workflows x 5 distributions
x 10 budgets x 10 deadlines x 7 error values x 3 algorithms).
To reduce the simulation time, only one application, Montage,
was used in this experiment.

The effect of provisioning delays on workflow performance
is similar to that of inaccurate runtime estimates: when the
delays are small, all algorithms are able to produce results
within the constraints, but for larger delays, the dynamic
algorithms are able to adapt to avoid exceeding the constraints
while the static algorithm is not. In the case of delays of
more than one minute, which is typical of what has been
observed on academic clouds [27] such as Magellan [28] and
FutureGrid [29], approximately half of the SPSS simulations
exceeded the budget; in some cases by up to a factor of 2.
In comparison, none of the simulations that used a dynamic
algorithm exceeded the budget or the deadline constraint.

This experiment suggests that SPSS is too sensitive to
provisioning delays in its current form to be of practical
use in real systems. It is possible that modifying the SPSS
algorithm to account for provisioning delays would improve
its performance on this experiment. In fact, since provisioning
operations are infrequent (because all the algorithms tend
to provision resources for a long time), it is likely that
the performance of SPSS could be improved significantly
by simply adding an estimate of the provisioning delay to
its scheduling function. Such an estimate may not have to
be particularly accurate to get good results, and developing
an estimate from historical data should be relatively simple.
Testing this idea is left for future work.

D. Task Failures

Running workflows consisting of large numbers of tasks on
distributed systems often results in failures. The goal of the
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Fig. 4: Boxplots for budget and deadline ratios when provisioning delay varies from 0 seconds to 15 minutes for all three
algorithms. Values greater than 1 indicate that the budget/deadline constraint was exceeded.

next experiment was to assess the behavior of the algorithms
in the presence of task execution failures by introducing a
failure model into the simulator. The model is characterized
by a failure rate f that defines the probability that a task will
fail. The failure time of the task is determined by randomly
sampling a value between the task start time and finish time.
If the task fails, it is reported to the workflow engine, which
retries the task until it succeeds. The dynamic algorithms re-
add the task to the priority queue (queue P in Algorithm 2)
so that it can be resubmitted by the scheduler. The SPSS
algorithm immediately resubmits the failed task to the same
VM that was selected in the plan (to minimize the disruption
to the overall plan).

Fig. 5 shows the ratios of simulated values to constraints
when the failures are introduced. The figure summarizes a
suite of 525,000 simulations (10 ensembles of 50 workflows
x 5 applications x 5 distributions x 10 budgets x 10 deadlines x
7 failure rates x 3 algorithms). As in the previous experiments,
these results show that high failure rates can degrade the
performance of the static algorithm considerably, while the
dynamic algorithms are able to adapt. Comparing Fig. 5 to
Figs. 3 and 4 one may conclude that failures are worse than
provisioning delays and runtime estimate errors, since their
impact is larger. However, we consider higher failure rates as
rare events that suggest a significant system malfunction or
invalid selection of resources.

E. SPSS Planning Time

Because SPSS involves more complicated logic than the
dynamic algorithms and makes its decisions before execution,
it is important to understand what impact planning time has
on the overall execution time.

Fig. 6 shows the SPSS planning time for ensembles of
100 workflows with five different workflow sizes: 50, 200,
400, 600, and 800 tasks. The ensembles were generated using
a constant distribution equal to the workflow size desired.
Two different applications were used: SIPHT and CyberShake.
Each box summarizes the results of 2000 simulations (2
applications x 10 ensembles x 10 budgets x 10 deadlines).

Fig. 6 shows that, for small workflows, the SPSS planning
time is reasonable, taking on the order of tens of seconds
to a few minutes. For larger ensembles of large workflows,
however, the SPSS planning time can easily reach 10 minutes.
Considering that the largest workflows used in this experiment
are still relatively small (maximum of 800 tasks), and that
real workflows are often much larger (workflows with tens
of thousands of tasks are common, and even workflows with
millions of tasks are possible), it is unlikely that SPSS will be
practical for ensembles of very large workflows.

SPSS considers scheduling each task on the cheapest avail-
able slot, which involves scanning all of the available slots on
all of the VMs. Since the number of available slots, in the
worst case, is proportional to the number of tasks scheduled
(because scheduling a task splits an existing slot into at most
two slots: one before the task, and one after), the complexity
of SPSS is O(n2), where n is the number of tasks in the
ensemble. In comparison, the dynamic algorithms all have a
more scalable complexity of O(n). DPDS only examines the
tasks in the workflow once when they are scheduled, and WA-
DPDS does it twice: once in the admission algorithm, and once
when they are scheduled. This makes the dynamic algorithms
a better fit for larger workflows and ensembles even though
in some cases they may not produce as good results as SPSS.

It may be possible to optimize SPSS to reduce its runtime



0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
os

t /
 B

ud
ge

t

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

 0 %  1 %  2 %  5 % 10 % 20 % 50 %

DPDS
WADPDS
SPSS

Failure rate

(a) Ratio of Simulated Ensemble Cost to Budget

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ak

es
pa

n 
/ D

ea
dl

in
e

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

D
P

D
S

W
A

D
P

D
S

S
P

S
S

 0 %  1 %  2 %  5 % 10 % 20 % 50 %

DPDS
WADPDS
SPSS

Failure rate

(b) Ratio of Simulated Ensemble Makespan to Deadline

Fig. 5: Boxplots for budget and deadline ratios when failure rate varies from 0% to 50% for all three algorithms. Values greater
than 1 indicate that the budget/deadline constraint was exceeded.
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Fig. 6: Planning time of SPSS algorithm for ensembles of 100
workflows and different workflow sizes.

by, for example, clustering the workflow to increase task
granularity, which would decrease the ratio of planning time
to ensemble makespan. It may also be possible to reduce the
complexity of SPSS by employing more sophisticated data
structures to store the available slots. Investigating these topics
is left for future work.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the interesting and important new
problem of scheduling and resource provisioning for scientific
workflow ensembles on IaaS clouds. The goal of this work
is to maximize the number of user-prioritized workflows that
can be completed given budget and deadline constraints.

We developed three algorithms to solve this problem: two
dynamic algorithms, DPDS and WA-DPDS, and one static al-
gorithm, SPSS. The algorithms were evaluated via simulation
on ensembles of synthetic workflows, which were generated
based on statistics from real scientific applications.

The results of our simulation studies indicate that the
two algorithms that take into account the structure of the
workflow and task runtime estimates (WA-DPDS and SPSS)
yield better results than the simple priority-based scheduling
strategy (DPDS), which makes provisioning decisions based
purely on resource utilization. This underscores the importance
of viewing workflow ensembles as a whole rather than as
individual tasks or individual workflows.

In cases where there are no provisioning delays, task run-
time estimates are good, and failures are rare, we found that
SPSS performs significantly better than both dynamic algo-
rithms. However, when conditions are less than perfect, the
static plans produced by SPSS are disrupted and it frequently
exceeds the budget and deadline constraints. In comparison,
the dynamic algorithms are able to adapt to a wide variety of
conditions, and rarely exceed the constraints even with long
delays, poor estimates, and high failure rates.

This study suggests several areas for future work. Our cur-
rent approach models data access as part of the task execution
time and does not consider data storage and transfer costs. In
the future we plan to extend the application and infrastructure
model to include the various data storage options available on
clouds. A previous experimental study [25] suggests that the
data demands of scientific workflows have a large impact on
not only the execution time, but also on the cost of workflows
in commercial clouds. In dynamic algorithms, it will be
interesting to extend our utilization-based autoscaling with
more advanced workflow-aware strategies based on feedback
control. We also plan to investigate heterogeneous environ-
ments that include multiple VM types and cloud providers,
including private and community clouds, which will make the
problem even more complex and challenging.
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