
Application Aware Software Defined Flows of
Workflow Ensembles

George Papadimitriou†, Eric Lyons‡, Cong Wang∗, Komal Thareja∗, Ryan Tanaka†,
Paul Ruth∗, J. J. Villalobos§, Ivan Rodero§

Ewa Deelman†, Michael Zink‡, Anirban Mandal∗

∗RENCI, University of North Carolina at Chapel Hill, NC, USA
†Information Sciences Institute, University of Southern California, CA, USA

‡Electrical and Computer Engineering Department, University of Massachusetts at Amherst, MA, USA
§Rutgers Discovery Informatics Institute, NJ, USA

Abstract—Computational science depends on complex, data
intensive applications operating on datasets from a variety of
scientific instruments. A major challenge is the integration
of data into the scientist’s workflow. Recent advances in dy-
namic, networked cloud resources provide the building blocks
to construct reconfiguration, end-to-end infrastructure that can
increase scientific productivity, but applications are not taking
advantage of them. In our previous work, we introduced Dy-
Namo, that enabled CASA scientists to improve the efficiency
of their operations and effortlessly leverage capabilities of the
cloud resources available to them that previously remained
underutilized. However, the provided workflow automation did
not satisfy all the operational requirements of CASA. Custom
scripts were still in production to manage workflow triggering,
while multiple layer2 connections would have to be allocated to
maintain network QoS requirements. In this work, we enhance
the DyNamo system with ensemble workflow management ca-
pabilities, end-to-end infrastructure monitoring, as well as more
advanced network manipulation mechanisms. To accommodate
CASA’s operational needs we also extended the newly integrated
Pegasus Ensemble Manager with file and time based triggering
functionality, that improves managing workflow ensembles. Addi-
tionally, Virtual Software Defined Exchange (vSDX) capabilities
have been extended, enabling link adaptation, flow prioritization
and traffic control between endpoints. We evaluate the effects
of the DyNamo’s vSDX policies by using two CASA workflow
ensembles competing for network resources, and we show that
traffic shaping of the ensembles can lead to a fairer use of the
network links.

Index Terms—adaptive weather sensing, network-centric plat-
form, distributed cloud infrastructure, dynamic network and
resource provisioning, malleable data flows, scientific workflow
automation, virtual software defined exchange

I. INTRODUCTION

Computational sciences depend on many complex, data-
intensive applications to coordinate computations on dis-
tributed datasets originating from a variety of scientific in-
struments and repositories. A major challenge for these ap-
plications is to effectively move the data among the diverse
compute and storage sites, as well as to integrate the data
into the scientists’ workflows. These workflows may require
specialized access to resources as well as a significant amount
of data transfers between tasks, with data residing in different
domains. Such scientific workflows require an integration of

two or more existing infrastructures using high-performance
networks and data management software in order to increase
the rate of scientific output. Currently, such integration is
either not available, or is purposely-built manually for a
specific scientific application or community. However, recent
advances in dynamic networked cloud infrastructure, such
as ExoGENI [1], provide the technical building blocks to
construct and manage such integrated, reconfigurable, end-to-
end infrastructure, built-to-order with isolated resources that
satisfy workflow compute and data movement requirements.

Data-driven applications and workflows have not adequately
taken advantage of the rich set of capabilities offered by a
new set of dynamic, networked infrastructures. They are not
designed to utilize adaptive features offered by state-of-the-
art, networked cloud infrastructures, especially with respect
to managing end-to-end, high-performance data flows. As a
result, domain scientists in weather modeling, ocean sciences,
seismology, etc., struggle to analyze data available in com-
munity resources. They often download the data to their own
environment, processing it at limited scales in modest chunks,
losing crucial time to react to the observed phenomenon and/or
missing longitudinal patterns.

Additionally, managing the execution of workflow ensem-
bles over the sophisticated inter-domain infrastructures re-
mains a significant challenge. Traditional workflow manage-
ment approaches make use of statically provisioned, ded-
icated, pre-configured compute and network infrastructure.
Such approaches are often associated with high cost, since
the resources are usually provisioned such that the highest
workload can be handled. This imposes extra cost when
the system stays idle. Therefore, the bursty computational
and network demands for science workflows warrant flexible
processing solutions on diverse infrastructures for computing,
and malleable, high-performance data movements for efficient
data delivery.

Previously, we presented the DyNamo system [2] that
addresses the above challenges and we focused on its net-
working capabilities that enable high-performance, adaptive,
performance-isolated data-flows across a federation of dis-
tributed cloud resources and community data repositories.



In this paper we enhance the DyNamo system with more
advanced layer 2 network manipulation We integrate DyNamo
with the virtual Software Defined Exchange (vSDX) [3] archi-
tecture, which serves as a virtual interconnect among different
domain infrastructures providing flexible, high-performance
data transfer over dedicated network circuits. We also intro-
duce end-to-end infrastructure monitoring and new workflow
ensemble management capabilities. Specifically, in this paper
we make the following contributions:

• We present a data-driven science application, named Col-
laborative Adaptive Sensing of the Atmosphere (CASA),
and describe its revised requirements and challenges that
need to be addressed by the DyNamo system.

• We briefly present the architectural components of the
DyNamo system, which provides federated infrastruc-
ture support to enable malleable, high-performance data
flows between diverse, distributed, national-scale research
cloud platforms (ExoGENI [1] and Chameleon [4]) and
the CASA data repository.

• We present the architecture of the vSDX network infras-
tructure, which enables high-performance data transfer
among heterogeneous compute and storage infrastruc-
tures, and we describe the newly introduced functionality
that allows link adaptation, flow prioritization and traffic
shaping.

• We improve the workflow automation features of the
Pegasus workflow management system by enhancing the
Pegasus Ensemble Manager with file and time workflow
triggering functionality, that can be leveraged directly
by CASA workflows to parallelize and control workflow
ensembles.

• We provide an in-depth evaluation and analysis of the
network performance on the inter-domain, multi-cloud
infrastructures. While network resource sharing is un-
avoidable, we discuss how DyNamo can mitigate the
negative effects.

The rest of this paper is organized as follows: Section II dis-
cusses background information for the DyNamo components.
Section III introduces the components of the CASA weather
forecasting application. Section IV presents the extended
components that work together to support science workflows.
In Section V, we evaluate the performance of the DyNamo
ensemble manager and of the DyNamo networking perfor-
mance. Section VI presents related work. Finally, Section VII
concludes the paper.

II. BACKGROUND

A. Pegasus WMS

Pegasus [5] is a popular workflow management system that
enables users to design workflows at a high-level of abstrac-
tion. The Pegasus workflow descriptions are independent of the
resources available to execute the workflow tasks and are also
independent of the location of data and executables. Pegasus
transforms these abstract workflows into executable workflows
that can be deployed onto distributed and high-performance

computing resources such as Leadership Computing Facilities
(e.g., NERSC [6] and OLCF [7]), shared computing resources
(e.g., XSEDE [8], OSG [9]), local clusters, and commercial
and academic clouds (e.g., ExoGENI [1], Chameleon [10]).
During the compilation process, Pegasus performs data dis-
covery, locating input data files and executables. Data transfer
tasks are automatically added to the executable workflow and
perform two key functions: (1) stage in input files to staging
areas associated with the target computing resources, and
(2) transfer the generated outputs back to a user-specified
location. Additionally, data cleanup (removal of data that is
no longer required by the workflow at the execution site)
and data registration tasks (that catalog the output files) are
also added to the workflow. To manage user’s data, Pegasus
interfaces with a wide variety of backend storage systems that
use different data access and transfer protocols.

Pegasus relies on HTCondor [11] DAGMan as its workflow
execution engine to run and manage the generated executable
workflows. DAGMan in turn, submits the workflow jobs, as
they become ready to run (when all parent jobs have completed
successfully) to the internal job queue managed by HTCon-
dor. During workflow execution, provenance information from
workflow and job logs is automatically parsed and stored in a
relational datastore by a monitoring daemon [12].

B. HTCondor

HTCondor [11] is a comprehensive job management system.
In contrast to other batch systems such as PBS [13] and
SLURM [14], it is particularly suited for distributed high
throughout computing (HTC) environments, where one can
setup a compute pool of nodes connected over a local area
network or a wide area network. HTCondor provides users
with a local job queue managed by a daemon HTCondor
Schedd to which users submit jobs. Furthermore, HTCondor
supports matchmaking [15] that allows users to match their
jobs with compute nodes that support specific resources.
The matchmaking takes place during the negotiation of the
resources and is based on HTCondor ClassAds advertised by
the compute nodes. Finally, in addition to submitting jobs
to HTCondor managed compute resources, HTCondor also
provides a component, called HTCondor-G [16], that allows
users to submit jobs to other types of schedulers.

C. Mobius

A network-centric platform called Mobius [17] depicted
in (Figure 1) includes (a) support for integrated, multi-
cloud resource provisioning and for high-performance science
data flows across diverse infrastructures, and (b) enhanced
mechanisms for interacting with higher level application and
workflow management systems and transforming high-level
resource requests to low-level provisioning actions, thereby
bridging the abstraction gap between data-driven science ap-
plications and resource provisioning systems, and (c) transpar-
ently maintain the quality of service of the provisioned end-to-
end infrastructure through continuous monitoring and control.
Mobius was enhanced in our previous work [2] to support



Fig. 1. Mobius - Network centric Platform.

the provisioning of network connections between compute
resources across sites/clouds and modulating the bandwidth
on these network connections.

D. DyNamo

Data-driven workflows need to automatically and flexibly
provision resources to satisfy scientists’ bursty computational
and network demands. In the case of CASA workflows
(Section III), the nature of ever-changing weather events, the
number of available sensors, and end user-defined triggers all
contribute to load variability.

As presented in a previous work [2], DyNamo enables
CASA scientists to transparently acquire cloud resources from
multiple cloud providers based on high-level resource require-
ments. As depicted in Figure 2, DyNamo provides network
integration and programmatic provisioning of specific cloud
resources using their native APIs. With this approach, domain
scientists no longer need to directly interact with diverse
cloud providers. To achieve this goal, DyNamo brings together
the 3 major components as defined earlier in this section:
Pegasus WMS is used to provide workflow automation to the
applications. HTCondor is used to manage the computational
resources and distribute the computations. Mobius is used
to allocate compute and network resources and create the
interconnect between data sources and execution sites. Later
in Section IV, we will present additional components for
DyNamo, making it an integrated, network-aware instrument
and monitoring tool for data-driven science applications in
multi-cloud environments.

E. Target Cyberinfrastructure

In this paper, we make use of two national scale research
cloud providers: ExoGENI and the Chameleon cloud.

• ExoGENI [1] is a networked Infrastructure-as-a-Service
(IaaS) testbed that links 20 cloud sites on campuses across
the US through regional and national transit networks,

such as Internet2 [18] and ESnet [19]. ExoGENI al-
lows users to dynamically provision isolated “slices” of
compute and networking resources from multiple sites
and to integrate various resources using layer2 global
dynamic-circuit networks like Internet2 and ESnet, and
private clouds like OpenStack [20]. ExoGENI allows
users to instantiate customized, distributed topologies,
and by provisioning the appropriate network resources
corresponding to the topologies, thereby creating end-to-
end layer-2 paths.

• NSF Chameleon Cloud [10] is a large-scale, deeply pro-
grammable testbed designed for systems and networking
experiments. Similar to ExoGENI, it leverages OpenStack
to deploy isolated slices of cloud resources for user
experiments. However, ExoGENI scales in geographic
distribution, while Chameleon scales by providing large
amounts of compute, storage, and networking resources
spread across two sites: University of Chicago (UC)
and the Texas Advanced Computing Center (TACC).
Chameleon provides over 15K cores and 5 PB storage
across the two sites. Users can provision bare metal com-
pute nodes with custom system configuration connected
to user-controlled OpenFlow switches operating at up
to 100 Gbps. In addition, Chameleon networks can be
stitched to external partners including ExoGENI slices.

III. CASA - MOTIVATION

The NSF Engineering Research Center for Collaborative
Adaptive Sensing of the Atmosphere (CASA) was formed to
study the lower atmosphere with networks of high resolution
Doppler weather radars with the goal to improve severe
weather awareness [21]. The volumetric data produced by
these continuously operating remote sensors must be dis-
tributed to processing servers quickly and efficiently such
that analysis can occur in near real time for the sake of
warning the public to fast developing threats such as tornadoes



Fig. 2. Dynamo framework

and high winds. The networked radar concept requires that
asynchronous raw data from multiple sources are blended
together to create value-added meteorological products. At any
given time the characteristics of the ongoing weather regime
determine the necessity and priority of certain products. For
example, a hail detection algorithm takes on high importance
only when strong thunderstorms are ongoing, whereas fore-
casting algorithms may be of more importance well in advance
of such severe weather events and perhaps somewhat less so
once the event has started.

For years, CASA’s scientific workflows associated with
product creation have been executed on dedicated servers
existing at individual radar sites and at compute centers at
NOAA Southern Region Headquarters and at the Univer-
sity of MA Amherst. Servers have been assigned dedicated
processing tasks carefully tailored to their hardware and
networking resources through trial and error with estimates
made regarding the largest likely compute loads associated
with each task. The careful management required implies
that reconfiguration is highly complex and not feasible by an
operator on short notice during an event. To help mitigate this
limitation, and to create a more scalable system, in recent
years CASA has developed several containerized scientific
workflows for calculating these weather products that can be
deployed and prioritized as needed [2]. CASA workflows are
generally multi-step processes that can include a collection
of necessary radar and non-radar sensor data access, grid
transformations, format conversions, derived product creation,
raster image generation, contouring, GIS based data extraction,
and customized notification and alerting [22]. These require
complex scheduling and in some cases significant resource
consumption, especially during widespread impactful weather
when they take on their greatest utility to the end users. For
these workflows, CASA now relies on Mobius to provision and
modulate compute and networking resources on demand, and
uses the Pegasus Workflow Management System to manage
task scheduling [2].

We briefly introduce the weather products that are generated
by the CASA workflows described in this paper.

A. Nowcast

Nowcasts are short-term advection forecasts that use ob-
served reflectivity data from multiple radars, composite them
for a certain number of minutes, and project into the future by
estimating the derivatives of motion and intensity with respect
to time [23], [24]. Every minute the CASA nowcasting system
generates 31 grids of predicted reflectivity, one for each minute
into the future from minutes 0-30. The workflow associated
with Nowcasting creates raster images for all 31 grids every
minute, and also contours for multiple reflectivity levels on
each of these grids. The contours are sent to a database
where they are used for notification purposes as simplified
boundaries containing forecast reflectivity levels of importance
for particular applications such as route planning, deployment
of spotters, and keeping emergency responders out of harm’s
way. Nowcast rasters and contours are sent to CASA’s data
repository over layer 2 stitchports [1] where they are used in
web and mobile applications.

B. Wind Speed

A Doppler radar is able to estimate the velocity of moving
objects based on a phase shift that occurs if the objects are
moving toward or away from the radar beam. Components of
velocity perpendicular to the beam are not sensed. For a given
radar this means that there will be substantial underestimations
of true wind speed over portions of the sensing domain where
certain directional components of the winds are not able to be
sampled. However, with an overlapping network of radars (as
in CASA’s case), areas not adequately sampled by one radar
are often better sampled by other radars with different relative
angles. Therefore CASA’s maximum observed velocity work-
flow ingests the single radar base data from all of the radars
in the network and creates a gridded product representing the
maximum observed wind speeds. As part of this workflow,
areas of severe winds are identified, contoured, and checked
against the location of known infrastructure, with email alerts
sent out to locations likely to be affected. Workflows that use
the large single radar raw data as input have a substantially
higher network bandwidth requirement than those operating on



derived data. Input rates of over 100Mbps are common, and
given that high winds, which are associated with tornadoes
and downbursts are often short lived, one must minimize
transmission delays as much as possible to adequately provide
warnings for users downstream of the observations.

IV. APPROACH - DYNAMO EXTENSIONS

In order to accommodate different application QoS policies
and make a more efficient use of the infrastructure, we
are extending the DyNamo system (Figure 2) with a more
advanced network manipulation component and support for
interval based workflow triggering.

A. vSDX module

A Virtual Software Defined Exchange (vSDX) is defined
as a virtual interconnect point between multiple adjacent
domains, e.g, instruments, compute resources, or data/storage
systems. Like a static SDX, a vSDX uses Software Define
Networking (SDN) within the exchange to enforce different
network policies.

In our case, the vSDX support is provided by the Exo-
Plex [25] network architecture depicted in (Figure 3). Exo-
Plex uses an elastic slice controller to coordinate dynamic
circuits and the Zeek (formerly Bro) [26] security monitors
via Ahab [27]. The controller runs outside of the vSDX
slice and exposes a REST API for clients to request network
stitching and connectivity and to express QoS parameters.
Clients (i.e. Mobius) invoke this API to bind named subnets
under its control to the vSDX via L2 stitching and request
bandwidth provisioned connectivity with other subnets. The
vSDX slice is comprised by virtual compute nodes running
OpenVSwitch [28], OpenFlow controllers [29], and Zeek
traffic monitors. Traffic flow and routing within the vSDX
slice are governed of a variant of the Ryu [30] rest router [31]
SDN controller. The vSDX slice controller computes routes
internally for traffic transiting through the vSDX network, and
invokes the SDN controller API to install them. The SDN
controller runs another Ryu module (rest ofctl) to block traffic
from offending senders. If a Zeek node detects that traffic
violates a Zeek policy, it blocks the sender’s traffic by invoking
a rest ofctl API call via the Zeek NetControl plugin.

As client requests for bandwidth provisioned connectivity
arrive at the vSDX, the slice controller instantiates slice re-
sources as needed to carry the expected traffic. These resources
include peering stitchport interfaces at each point of presence
(PoP), the OVS nodes that host these vSDX edge interfaces,
Zeek (Bro) nodes to monitor the traffic, and backplane links to
carry the traffic among the PoPs. The controller reuses existing
resources in the slice if they have sufficient idle capacity to
carry the newly provisioned traffic, and instantiates new re-
sources as needed. In particular, it adapts the vSDX backplane
topology by allocating and releasing dynamic network circuits
as needed to meet its bandwidth assurances to its customers.
The flows are inspected by out of band Zeek network security
monitor appliances to detect intrusion. As a simple form of
intrusion prevention, it uses Zeek’s NetControl framework to

Fig. 3. Virtual Software Defined Exchange (SDX) Network Architecture

interrupt all traffic from the source of a suspect flow. The
vSDX controller deploys Zeek instances elastically to scale
capacity.

In our scenario, the Exoplex Slice controller [32] runs as a
docker container. Mobius has been enhanced to communicate
with the ExoPlex Slice controller via its REST API to establish
network connectivity between ExoGENI and Chameleon via
layer2 networks and to allocate bandwidth to individual work-
flows. Once connectivity is established, Mobius triggers REST
API calls to publish network prefixes, sets up routes between
network prefixes and dynamically applies different bandwidths
as needed. Additionally, we have implemented a Python based
interface that can be used to provision the required resources.
This interface enables programmatic resource provisioning and
is capable of spinning up resources, establishing connectivity
and implementing network QoS policies on a per workflow
ensemble level.

B. Pegasus Ensemble Manager

Pegasus can manage collections of related workflows, re-
ferred to as ensembles, through a service called the Pegasus
Ensemble Manager (Pegasus-EM) [33]. Pegasus-EM supports
ensemble creation, workflow prioritization, throttling of con-
current executions, and ensemble level monitoring capabilities.

To support dynamic execution of workflow ensembles based
on the continuous flow of data obtained from various sources,
we have have extended Pegasus-EM with a file based workflow
triggering capability. For a given ensemble, Pegasus-EM can
create a trigger that watches for newly received files, using a
configurable time interval and a given file pattern. On each
interval, a Pegasus-EM trigger identifies any new input files
that match the provided file pattern, and pass them to a user-
defined workflow generation script to dynamically create and
plan a Pegasus workflow based on the incoming data. Pegasus-
EM executes the workflow generation script and queues up the
generated workflow for execution.

C. Prometheus Monitoring

The Prometheus monitoring system [34] has been added
to the DyNamo ecosystem. Mobius automatically configures
the Prometheus node exporter [35] on each compute node to
push system metrics to a Prometheus server hosted at RENCI.
The metrics collected by Prometheus enable us to dynamically



Fig. 4. Grafana Dashboard depicting Prometheus Metrics

take actions to ensure the infrastructure QoS. The actions
include enabling compute, storage and network elasticity, i.e.,
growing and shrinking compute or storage resource pools
and increasing or decreasing network properties of links. To
visualize the collected data in a comprehensive and easy
to understand way, an instance of Grafana [36] has been
configured to pull the metric data from Prometheus and plot
various graphs on a dashboard depicted in Figure 4.

D. Operational Effect on CASA’s Workflows

CASA workflows, due to their nature, can benefit from
both of these enhancements to the DyNamo framework. As
described in Section III, CASA workflows need to process and
respond to a continuous flow of weather radar data arriving at
different rates. With the additions to the Pegasus-EM, CASA
workflows can be started automatically as new files arrive at
CASA’s data repository, with direct support by the DyNamo
framework. In the past this functionality was implemented
using perl scripts that were invoked manually at the processing
initiation stage. Moreover, with the introduction of the vSDX
capabilities CASA workflow ensembles can now share the
same layer2 link in an isolated fashion. I.e, traffic from one
workflow can only consume the maximum assigned bandwidth
without impacting the network resources assigned to other
workflows. CASA’s workflows have different requirements
among them that not only depend on the data being processed
and the pipeline, but also the workflow configuration. With the
vSDX, CASA can reserve a single layer2 circuit to its data
repository while distributing the network bandwidth based on
the network subnet each worker node resides in. Each worker
is assigned a specific CASA workflow ensemble by advertising
a target workflow tag in its HTCondor advertisements. Previ-
ously this functionality was supported by reserving multiple
layer2 circuits on CASA’s data repository, but due to the
limited number of the available links this couldn’t be achieved
consistently.

V. EVALUATION

A. CASA Pegasus Workflows Description

For the evaluation of the QoS impact we have selected two
CASA workflows that produce nowcasts and wind speed esti-
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Fig. 5. CASA Wind Pegasus Workflow.

mates as described in Section III. The workflow tasks include
input data collection and product generation, visualization,
contouring into polygon objects, spatial comparisons of iden-
tified weather features with infrastructure, and dissemination
of notifications.
Nowcast. The Pegasus Nowcast workflow [37] computes
short-term advection forecasts, as described in Section III-A,
by splitting grided reflectivity data into 31 grids and computing
reflectivity predictions over the next 30 minutes. An abstract
version of the workflow’s DAG is presented in Figure 6,
which reveals that the size of the workflow doesn’t depend
on the input, and the number of compute tasks is fixed. The
nowcast workflow contains 63 compute tasks in total, 1 task
for splitting the input data into 31 individual grids, and then
62 independent tasks that compute the reflectivity and the
respective contour images. All tasks run within a Singularity
container that is managed by Pegasus and has a size of 153MB.
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Fig. 6. CASA Nowcast Pegasus Workflow.



Fig. 7. CASA vSDX workflow deployment.

Wind. The Pegasus Wind Speed workflow [38] computes the
maximum wind velocity, by combining multiple single radar
output to account for single radar measurement inaccuracies
(Section III-B). An abstract version of this workflow’s DAG
is depicted in Figure 5. To construct the input for the wind
speed pipeline (preprocessing phase), single radar data files
are accumulated over a variable time window (minimum 1
minute), which regulates how often CASA produces maximum
wind velocity contours, but also affects the size of the input
of a single workflow run. As a result the first level of tasks
(unzipping any zipped files) in the wind speed workflow
(Figure 5) depends on the number of input files, and thus
the workflow has a variable number of tasks. The unzipping
phase is followed by four compute tasks that output the wind
products and notify points of interest for severe weather. These
four tasks are running within a Singularity container, 163MB
in size.
Workflow Testcases. To conduct our evaluation, both work-
flows are processing 30 minutes of pre-captured real weather
data, which we replay as if they were arriving in real-time
to simulate a production scenario from CASA’s operations.
The individual files consumed by the nowcast workflow are
9.6MB in size and the total size is 287MB. On the other
hand the dataset for the wind workflows is comprised by files
with individual size of ~12MB, and the total dataset size is
~6GB. For the two workflows we replay the data using an
accumulation interval of 1 minute and we are using Pegasus-
EM to identify the newly added files and queue nowcast or
wind workflow to their respective ensembles.

B. Experimental Infrastructure

For evaluation, we used the DyNamo system to deploy
a production scenario that is similar to CASA’s day to day
operational radar data processing setup, and spreads across
both ExoGENI and Chameleon testbeds (Figure 7). In our

setup Mobius and the vSDX controller are running within
Docker containers at our USC Information Sciences Institute
(ISI) Docker cluster.

Additionally, we are using one of CASA’s operational nodes
at the University of North Texas (UNT) in Denton, TX, to
host the data and submit the Pegasus workflows. The vSDX
nodes and the workflow master node are located on ExoGENI
at the University of Massachusetts Amherst (UMass) rack,
on separate slices, while the compute nodes are located on
Chameleon at TACC. To establish the layer2 connectivity
between the sites, Mobius ”stitched” the UNT server to the
workflow master node and instructed the vSDX controller to
stitch the same node to the Chameleon nodes via the vSDX
slice. The Chameleon compute cluster contains 5 nodes, 4
compute nodes and 1 storage node. 3 of the compute nodes
reside in the 192.168.40.0/24 subnet while the other compute
node and the storage node reside in subnet 192.168.30.0/24.
Each node has 24 physical cores with hyperthreading (48
threads), 192GB RAM, 250GB SSD and is connected to
a shared 10Gbps network. During the experiments we did
not use the storage node to optimize for network traffic,
but it was used as a next hop to route traffic from the
subnet (192.168.40.0/24) that did not match the Chameleon
stitchport’s subnet.

As we have shown in our initial evaluation of the DyNamo
system [2] 144 and 48 HTCondor compute slots are enough to
execute the nowcast and the wind speed workflow ensembles,
respectively, without any compute imposed delays. Using
HTCondor tags, the 3 compute nodes residing on the subnet
192.168.40.0/24 have been assigned to nowcast workflow
tasks, while the node on the subnet 192.168.30.0/24 has been
assigned to the wind speed workflow. Finally, all the stitchable
networks were created with a network bandwidth of 1Gbps.

Software. On the submit node (where parts of the Dynamo
system reside), the master node and the worker nodes we
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have installed HTCondor v8.8.9, and we have customized
its configuration to match the role of each node. In this
setup, the workers are configured with partitionable slots and
they advertise a workflow tag so they can be matched to
the correct workflow. Additionally, on the submit node we
have installed the nightly build of Pegasus v5.0.0 and the
Apache HTTP server, to allow the workers to retrieve input
files, configuration files and the application containers over
HTTP. All of the workers use Singularity v3.6.1, and Mobius
was used to provision compute resources on ExoGENI and
Chameleon, and establish the network connections between
ExoGENI, Chameleon and the CASA repository.

C. Workflow Ensembles - Network Requirements

The two workflow ensembles present different network
requirements due to the amount of tasks and the container
transfers they instantiate. We profile the network utilization
on CASA’s data repository at UNT, during the execution of
the two workflow ensembles, using a dedicated 1Gbps layer2
connection and the testcase datasets described in Section V-A.

Figure 8 shows that the wind workflow ensemble is ex-
ecuted for ~2100 seconds, has an average bandwidth usage
of ~200Mbps with a peak close to 250Mbps, while the total
amount of data transferred is ~44GBs.

Figure 9 depicts the network utilization imposed by the
nowcast workflow ensemble. The nowcast calculations are
occupying resources for ~3200 seconds and they lead the
network to congestion for prolonged periods of time. The
average network utilization is close to 900Mbps with spikes
reaching 960Mbps, and the total amount of data transferred is
~280GBs.

From Figures 8 and 9 it is clear that the two workflow
ensembles cannot fairly share the shame network resources
without one of them impacting the other’s QoS constraints,
since the nowcast workflow ensemble will lead to prolonged
network congestion. In our previous work [2] we used work-
flow runtime optimizations provided by Pegasus (e.g., task
clustering) in order to lower nowcast’s network requirements,
but we did not apply them to this study since it is our goal
to evaluate the effectiveness of DyNamo’s new network QoS
capabilities.
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Fig. 9. Nowcast Ensemble - Network Utilization.

D. Experimental Results

To produce our results we repeated the workflow ensemble
executions 5 times, leading to 900 workflow submissions and
over 240,000 file transfers generating over 900GBs of network
traffic. Figures 10 and 11 present makespan statistics of the
individual workflows of the ensembles, while Figures 12 and
13 present statistics of the individual data transfers of the
workflow ensembles.

1) Dedicated link performance: To conduct our analysis,
we first executed the nowcast and wind workflow ensembles
under the best conditions possible, using 1Gbps dedicated
layer2 connection. For the wind ensemble Figures 10 and
12 show a very consistent workflow duration (~300 seconds)
and file transfer duration with very little deviation. On the
other hand, since the nowcast workflow was creating network
congestion we observe a noticeable deviation in both the
workflow and file transfer durations (Figures 11 and 13).
More than half of the workflows in the nowcast ensemble are
completed within less than 1500 seconds. However, there are
workflow executions that take from 500 seconds all the way
to ~2,400 seconds.

2) Uncontrolled network sharing: When we allow the two
workflow ensembles to share the same network resources
without any QoS policy, then we observe a very noticeable
increase to the workflow makespans (Figures 10, 11 middle).
The most impacted are the workflows of the wind ensemble,
where the average workflow duration increases from 300 sec-
onds to over 1000 seconds, with some workflows completing
execution close to 1800 seconds. This is an increase of over
500%. The impact of the additional network overhead is also
visible in the nowcast workflows, although more subtle. The
median nowcast workflow duration increased by about 200
seconds, while there were more workflows to the far ends of
the spectrum.

3) Applying QoS policies: Finally, based on the network
profiles presented in Figure 8 and Figure 9 we allocated
300Mbps of the available network bandwidth to the wind
workflow ensemble and 700Mbps to the nowcast workflow
ensemble, in an attempt to accommodate any network spikes
of the wind ensemble. Both Figures 10 and 12 (right) show
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Fig. 10. Wind Ensemble Workflow Makespans.
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Fig. 11. Nowcast Ensemble - Workflow Makespans.

an improvement of the wind workflow median makespan and
data transfer durations. The wind ensemble’s statistics have
returned to a more consistent and predictable state with small
deviation, similar to the execution conditions when a dedicated
network link was used. Meanwhile, as it was expected, the
median runtime of the nowcast workflows has increased since
there is less available bandwidth (700Mbps) than what the
workflow would optimally require (~900Mbps). However, the
relative increase in comparison to the dedicated link runtimes
is less than 60%. Something we did not expect to see was
that even though the median duration of the file transfers in
the nowcast ensemble increased by a few seconds, the transfers
became more consistent, reducing the duration of the slowest
transfers.

From our experiments it is clear that DyNamo can aid to
maintain the QoS of workflow ensembles when they are facing
uneven network contention. Even though, TCP congestion
algorithms attempt to provide a fair share of the network to
all of the flows occupying it [39], they cannot provide it at the
level of workflow ensembles. Workflow ensembles that flood
the network with transfers are claiming a bigger chunk of the
available bandwidth, impacting other ensembles with fewer
transfers, which struggle to gain their network share. Through
well-thought infrastructure deployment-design DyNamo can
identify the individual flows that belong to specific workflow
ensembles and effectively allocate bandwidth to meet their
QoS expectations.
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Fig. 12. Wind Ensemble - Workflow Data Transfer Durations.
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VI. RELATED WORK

There has been extensive prior work on the topics of cloud
support for various types of science applications. In this sec-
tion, we review the related works, which can be classified into
three categories: cloud platforms, inter-domain networking and
compute infrastructure provisioning for science workflows,
and science workflow management systems.

Cloud platforms. A lot of work has been done on the
development of research and commercial cloud infrastruc-
tures. A number of public cloud providers, such as Amazon
EC2 [40] and Microsoft Azure [41], offer IaaS abstractions
and some ability to orchestrate them together with networks
through mechanisms like CloudFormation [42] and Heat [43].
However, data movement among different cloud providers and
infrastructures is expensive and hard to implement, which
significantly limits the use of commercial clouds in science
applications [44]. The GlobusOnline [45] project provides
users the ability to efficiently move data from one computing
resource to another, however, it does not provide unified
environments for science workloads. In the work presented
in this paper, we focus on integration of scalable, recon-
figurable distributed testbeds, including ExoGENI [1] and
Chameleon [4] with emphasis on data movement.

Inter-domain networking and compute infrastructure
provisioning for science workflows. There have been ex-
tensive survey papers [46]–[48] in regards to provisioning
IaaS cloud resource for scientific workflows. Wang et al. [49]
propose an approach to build and run scientific workflows on a



federation of clouds using Kepler and CometCloud. Moreover,
there have been strategies for workflow systems to deploy
virtual machines in the cloud with limited support for on-
demand provisioning and elasticity, while none or minimal
support to infrastructure optimization is enabled. Ostermann
et al. [50] discussed a set of VM provisioning policies to
acquire and release cloud resources for overflow grid jobs from
workflows, and characterized the impact of those policies on
execution time and overall cost. In prior work [2], we pre-
sented dynamic provisioning techniques that spawn resources
based on compute elasticity using Mobius [51].

On the perspective of networking between the compute,
storage and instrument sites, Macker et al. [52] describe work-
flow paradigms to address network edge workflow scenarios.
Ramakrishnan et al. [53] present experience for virtualized
reservations for batch queue systems, as well as coordinated
usage of TeraGrid, Amazon EC2 and Eucalyptus (cloud)
resources with fault tolerance through automated task replica-
tion. Liu et al. [54] developed the Virtual Science Network
Environment (VSNE) that emulates the multi-site host and
network infrastructure, wherein software can be tested based
on mininet with SDN capabilities.

As an important factor, many of the prior works have
thrived to achieve a satisfactory Quality of Service (QoS)
for the provisioned resources, as indicated by many recent
survey papers [55], [56]. Varshney et al. [56] proposed QoS
based workload scheduling mechanism by considering energy
consumption, execution cost and execution time as QoS pa-
rameters. The Department of Energy’s ESNet has proposed
an On-Demand Secure Circuits and Advance Reservation
System [57], which provides software system for booking time
and resources on high-speed science networks used by large
teams of researchers to share vast amounts of data.

Our work presented in this paper differs from the above
by presenting easy-to-use, on-demand resource provisioning
mechanisms for malleable data movement and compute pro-
visioning for inter-cloud workflows. We provide dedicated
network connections among multiple cloud provider sites with
guaranteed performance and QoS.

Science workflow management systems. Several workflow
management systems focus on the optimization of science
application management on cloud platforms. Islam et al. [58]
presented a scalable workflow management system specifically
for Hadoop applications. Senturk et al. [59] deal with bioinfor-
matics applications on multi-clouds with a focus on resource
provisioning. Malawski et al. [60] presented cost optimiza-
tion modeling for scheduling workflows on public clouds to
minimize the cost of workflow execution under deadline con-
straints. Abrishami et al. [61] presented workflow scheduling
algorithms based on partial critical paths, which also optimize
for cost of workflow execution while meeting deadlines. With
the rise of multi-clouds, many workflow management systems
have focused on this type of platform. Matthew et al. [62] dis-
cuss workflow management on multi-cloud brokering among
multi-cloud domains with heterogeneous security postures. In
this paper, we propose a new approach to enable dynamic

resource provisioning, which is integrated with a workflow
management system, and demonstrated through deployments
with science applications.

VII. CONCLUSION

We presented three extensions to the DyNamo system that
address processing, infrastructure and monitoring challenges
of CASA’s distributed, atmospheric science workflows. By
enhancing Mobius with Virtual Software Define Exchange
(vSDX) capabilities, the DyNamo framework can now provide
link adaptation, flow prioritization and traffic control between
endpoints. Even when single workflow ensembles attempt to
create network congestion, other ensembles can maintain their
own QoS requirements, avoiding unfair network usage. To
evaluate the QoS polices we deployed two of CASA’s work-
flow ensembles (wind speed and nowcast) and we showed that
even though the nowcast ensemble is capable of interfering
with the wind ensemble, by applying the QoS policies the
interference is removed and the wind ensemble performs sim-
ilarly to as if it was using a dedicated network link. Addition-
ally, we extended the Pegasus Ensemble Manager (Pegasus-
EM) to support file and time-based workflow triggering logic
that allows CASA to automatically execute its workflows as
new data arrive while managing the number of the concur-
rent workflows being executed. Finally we incorporated the
Prometheus monitoring system into the DyNamo framework,
providing comprehensive information about the status of the
network and the compute resources, allowing CASA scientists
to better understand the performance of their provisioned
resources across the clouds. In the future, we plan to extend the
DyNamo system’s capabilities by stitching to more resource
providers, supporting streaming workflows, developing new
CASA workflows and provide mechanisms that will allow
the applications to automatically evaluate the current pressure
applied on the provisioned resources and make adjustments to
the infrastructure without user intervention (e.g., change the
QoS policies of workflow ensembles).
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