

Enabling Large-scale Scientific Workflows on

Petascale Resources Using MPI Master/Worker

Mats Rynge1

rynge@isi.edu

Scott Callaghan2

scottcal@usc.edu

Ewa Deelman1

deelman@isi.edu

Gideon Juve1

gideon@isi.edu

Gaurang Mehta1

gmehta@isi.edu

Karan Vahi1

vahi@isi.edu

Philip J. Maechling2

maechlin@usc.edu

1
Information Sciences Institute, University of Southern California

2
Southern California Earthquake Center, University of Southern California

ABSTRACT
Computational scientists often need to execute large, loosely-

coupled parallel applications such as workflows and bags of tasks

in order to do their research. These applications are typically

composed of many, short-running, serial tasks, which frequently

demand large amounts of computation and storage. In order to

produce results in a reasonable amount of time, scientists would

like to execute these applications using petascale resources. In the

past this has been a challenge because petascale systems are not

designed to execute such workloads efficiently. In this paper we

describe a new approach to executing large, fine-grained

workflows on distributed petascale systems. Our solution involves

partitioning the workflow into independent subgraphs, and then

submitting each subgraph as a self-contained MPI job to the

available resources (often remote). We describe how the

partitioning and job management has been implemented in the

Pegasus Workflow Management System. We also explain how

this approach provides an end-to-end solution for challenges

related to system architecture, queue policies and priorities, and

application reuse and development. Finally, we describe how the

system is being used to enable the execution of a very large

seismic hazard analysis application on XSEDE resources.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Device]: Modes of

Computation – Parallelism and concurrency

General Terms
Algorithms, Management, Reliability

Keywords
Workflow management, task clustering

1. INTRODUCTION

Many computational scientists need to execute large-scale,

loosely-coupled applications in order to do their research. These

applications are often structured as scientific workflows that

consist of a few large parallel tasks surrounded by a large number

of small, serial tasks used for pre- and post-processing. Although

the majority of the individual tasks within these applications are

relatively small (less than a few minutes in runtime), in aggregate

they represent a significant amount of computation and data. Such

fine-grained workflows frequently contain tens of thousands of

tasks, and workflows with up to a few million tasks are not

uncommon [5]. Together, these tasks may require many tens of

thousands of CPU hours of computation and process many

terabytes of data.

In order to complete these large-scale computations in a

reasonable amount of time, large-scale compute and storage

resources are required. Scientists would like to take advantage of

state-of-the-art petascale systems such as NICS Kraken and

NCSA Blue Waters to reduce their time to solution, but these

systems and systems like them are typically not optimized to

execute loosely-coupled workloads efficiently. There are several

challenges related to software, scheduling, and networking that

must be overcome in order to make this possible.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

XSEDE’12, July 16-20, 2012, Chicago, IL, USA

Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

The first challenge scientists face when running loosely coupled

jobs on petascale systems is working with software from a variety

of diverse sources. Computational scientists often need to

integrate multiple scientific codes into pipelines and workflows in

order to achieve their goals. These codes are often developed by

different teams, over a long period of time, and have been

carefully validated to ensure they are scientifically correct, so

modifying them to be parallel codes is usually not feasible.

Although some optimizations and smaller code changes can be

performed, writing new software from scratch to better fit the

programming models typically used on petascale systems is often

not an option. Scientists need to make existing codes work within

the execution environment provided by the resources.

Another major challenge users face when running loosely-coupled

applications on petascale systems is that most petascale systems

are highly optimized for running large, monolithic, parallel jobs

such as MPI codes. Over the past decade, there have been many

changes in the system architecture of compute clusters. For

example, during TeraGrid and now into XSEDE, the available

systems have progressed from traditional Linux clusters to more

specialized environments, such as the Cray XT System

Environment. The traditional clusters were composed of relatively

generic server-class machines with IA64, x86 or x86_64

processors running standard Linux distributions. On such clusters,

mixed MPI/serial workloads could be supported using tools such

as Condor Glideins [12][15]. In contrast, on newer systems the

hardware and software architectures are highly optimized for

running parallel applications. For example, when a job is

submitted on the Cray XT5 (NICS Kraken), rather than starting on

the compute nodes, the job script runs on a service node. In that

script, the user can execute the aprun command to access a second

level scheduler called ALPS (Application Level Placement

Scheduler), which handles the placement and execution of parallel

processes. In addition, there are significant differences between

the traditional clusters and systems like the Cray XT5 at the node

level. The former has, in many cases, a complete Linux

environment with a full suite of tools running on the compute

nodes, while the Cray has a very minimal kernel with almost no

system tools available, and no shared libraries. Similarly, a

traditional cluster usually has compute nodes with full IPv4/6

networking support in addition to high-speed interconnects such

as Infiniband. Sometimes nodes on traditional clusters even have

public IPs. In contrast, networking on Cray compute nodes is

usually limited to system-local connections over a custom,

vendor-specific interconnect. These differences significantly limit

the scientists’ choice of tools to use for executing loosely-coupled

applications. Many existing high throughput computing tools,

including Condor Glideins, depend on a basic set of system tools

and the ability to make outbound IP network connections, which

makes the tools a poor fit for these petascale systems.

Another challenge facing scientists that want to run loosely

coupled jobs on petascale systems is scheduling policies. Similar

to their architectures, the queue policies and job priorities of

petascale systems reflect their preference for large parallel jobs.

Many systems place a limit of the number of simultaneous jobs a

user can have in the queue and/or have running. On NICS Kraken,

for example, a user is only allowed to have 5 running jobs and 5

ready to run jobs in the queue. If more than 5 jobs are submitted,

they will be placed in a blocked state and not considered by the

scheduler. Also, Kraken gives jobs with over 32,000 cores the

highest priority and considers jobs with smaller core counts as

backfill. Note that we do not disagree with these policies, we are

simply pointing out that they pose a challenge when trying to run

workloads that contain of a large number of serial tasks.

Previous approaches to solving these problems have limitations

that reduce their effectiveness. Task clustering [23] reduces

scheduling overheads and queuing delays by grouping several

tasks into a single job, which increases throughput, but often

reduces parallelism by forcing independent tasks to be executed in

serial. Advance reservations [25] eliminate queuing delays by

giving users exclusive access to a set of resources for a limited

amount of time, but are not supported on many systems and have

a negative impact on resource utilization and QoS. Pilot jobs

[15][20][6][16][7] enable more efficient application-level

scheduling, but require direct network access to compute nodes,

which is often not feasible due to the use of firewalls, private

networks, and compute nodes with highly customized networks.

In this paper we describe a new approach to scheduling large,

fine-grained workflows on petascale systems. Our approach

involves partitioning large, loosely-coupled workflows into

independent subgraphs, and then executing each subgraph as a

self-contained MPI job. This approach has been implemented in

the Pegasus Workflow Management System [10] using a new

MPI-based master/worker task scheduling tool called pegasus-

mpi-cluster (PMC). In the remainder of this paper, we describe

how PMC enables us to run large-scale, fine-grained grid

workflows on petascale systems. We also describe an example

application, the Southern California Earthquake Center (SCEC)

CyberShake workflow, which is being deployed on the NICS

Kraken system using Pegasus and PMC.

2. RELATED WORK

Workflow systems such as Askalon [11], Taverna [18], Triana

[24], Kepler [1], and Condor DAGMan [8] are designed to run

scientific workflows on the grid. These systems typically assume

workflow tasks can be submitted to clusters remotely. Although

the majority of resources available through XSEDE and other

grids can be accessed using grid middleware such as Globus,

these interfaces do not provide the level of throughput required for

very fine-grained workflow tasks. In addition, grid middleware

submits tasks directly to the local scheduler, which is often not

capable of scheduling a large number of small tasks efficiently.

Grid-based master-worker systems such as Condor MW [13],

Work Queue [4], Falkon [20], Condor Glideins [12][15][22] and

pilot job frameworks [17][16][6] have been used to enable high-

throughput scheduling of fine-grained tasks in grids. These

systems start worker processes on remote clusters using standard

batch jobs, and distribute tasks to those workers from a central

master process running outside the target cluster. This approach

allows these systems to achieve better throughput by bypassing

the normal scheduling path, which is typically not optimized for

small tasks. The problem with this approach is that it requires

direct TCP connections from the master to the target cluster’s

compute nodes. This is not feasible on many clusters because of

security concerns, firewalls, private networks, and a lack of TCP

stacks on compute nodes.

DAGs and other task graph representations are used as the

programming model for many parallel applications because they

are effective in expressing and optimizing irregular computations

[3][2][9][19]. These applications are typically decomposed into

function-level tasks that perform very fine-grained computations

and access small amounts of data stored in memory. In

comparison, the workflow applications we are targeting in this

work are composed of relatively coarse-grained, process-level

tasks that access much larger data sets stored in a shared file

system.

3. APPROACH

3.1 Pegasus Workflow Management System

The Pegasus Workflow Management System [10] is used by

scientists to execute large-scale computational workflows on a

variety of cyberinfrastructure ranging from local desktops to

campus clusters, grids, and commercial and academic clouds, as

shown in Figure 1. Pegasus enables scientists to compose abstract

workflows without worrying about the details of the underlying

execution environment or the particulars of the low-level

specifications required by the middleware (Condor, Globus, or

Amazon EC2). First, scientists create data stores that contain

information about the data files and transformations used in the

calculation (RLS [7] and transformation catalog) and information

about the available computing resources (called site catalog).

Then the scientist provides an abstract representation, a directed

acyclic graph (DAG), which may contain sets of different tasks.

For example, some tasks may be embarrassingly parallel, while

others may have complex dependencies. Pegasus takes in this

abstract workflow and generates an executable workflow based on

information about available resources. The system is composed of

three components:

 Mapper (Pegasus Mapper): Generates an executable

workflow based on an abstract workflow provided by the

user or workflow composition system. It finds the

appropriate software, data, and computational resources

required for workflow execution. The Mapper also

restructures the workflow to optimize performance and adds

transformations for data management and provenance

information generation.

 Execution Engine (Condor DAGMan): Executes the tasks

defined by the workflow in order of their dependencies.

DAGMan relies on the resources (compute, storage and

network) defined in the executable workflow to perform the

necessary actions.

 Scheduler/Task manager (Condor Schedd): manages

individual workflow tasks: supervises their execution on

local and remote resources.

3.2 Executing Large Workflows on

Distributed Resources

When executing large workflows on distributed

cyberinfrastructure, the Pegasus Mapper usually partitions

workflows into manageable clusters that can be executed as single

units. The restructuring of the workflow done by the Mapper

helps reduce the scheduling overhead of short running jobs.

Additionally, on resources with queue policies limiting the

number of jobs a user is allowed to have in the queue, clustering

can increase throughput. The Mapper also adds data management

processes (new workflow nodes) to the executable workflow that

stage in the input data required for these clusters of jobs and ship

out the output data from the execution sites. The Pegasus Mapper

can be configured to use different types of graph clustering

techniques to determine how the jobs are clustered and also what

executables to use for the clustered job. Some of the supported

clustering techniques are listed below:

1. Horizontal - The Mapper clusters jobs on the same level of

the workflow. The level for a job is determined by doing a

Breadth First Search of the underlying DAG. The number of

jobs that are clustered into a clustered job is determined by

Figure 1. Pegasus Workflow Management System provides support for running

scientific workflows using many types of computing resources currently available.

user provided configuration parameters for different job

types.

2. Runtime-based Horizontal Clustering - In this technique

the Mapper looks at the expected runtimes of the jobs and

does the grouping of the jobs on the same level of the

workflow based on the maxruntime specified by the user for

each job type.

3. Label-based Clustering - In this technique, the user

identifies subgraphs in the abstract workflow description that

they want to execute as one cluster. This is achieved by user

associating labels with the jobs. Jobs associated with the

same label are put in by Pegasus into the same cluster.

Workflows using previous versions of Pegasus WMS have

traditionally used pegasus-cluster, a C executable that runs

clustered jobs sequentially on a node. pegasus-cluster allows us to

reduce the scheduling overhead of running lots of short running

jobs as part of the workflow. However, since pegasus-cluster can

only run jobs sequentially on a single node, it does not allow us to

efficiently schedule tasks on the thousands of cores available on

large systems, especially with per user job queue limits in place.

In the past, we have used Condor Glideins [12][15][22][21] to

overlay a Condor pool on top of resources. Condor Glideins start

worker processes on remote clusters using standard batch jobs,

and distribute tasks to those workers from a central master process

running outside the target cluster. The problem with this approach

is that it requires direct TCP connections from the cluster compute

nodes to the central master. This is not feasible on many of the

large clusters, so we wanted a self-contained solution, which

would not require networking to the outside of the cluster.

3.3 Pegasus MPI Cluster

In order to efficiently use petascale systems for large workflow

applications, and to address the system architecture and network

issues outlined above, we have developed an MPI-based task

management tool called pegasus-mpi-cluster (PMC). Using MPI

enables us to leverage the underlying network communications

libraries through a common interface that is portable across

cutting-edge cyberinfrastructure.

A PMC job consists of a single master process (this process is

rank 0 in MPI parlance) and several worker processes. These

processes follow the standard master-worker architecture. The

master process manages the workflow and assigns workflow tasks

to workers for execution. The workers execute the tasks and

return the results to the master. Communication between the

master and the workers is accomplished using a simple text-based

protocol implemented using MPI_Send and MPI_Recv.

In order for this approach to work, the target system must have a

shared file system to enable the workers to access the executable

specified in the workflow, read the workflow input data, and store

workflow output data, and the system’s compute nodes must

allow the worker processes to fork additional processes to execute

the tasks. We believe that these requirements are satisfied by most

or all of the systems currently available through XSEDE and the

DOE, and by upcoming systems such as Blue Waters.

3.4 Workflow Descriptions

PMC jobs are expressed as a Directed Acyclic Graph (DAG).

Each node in the DAG represents a workflow task, and the edges

represent dependencies between the tasks that constrain the order

in which the tasks are executed. Each task is a program and a set

of parameters that need to be executed. The dependencies

typically represent data flow dependencies in the application,

where the output files produced by one task are needed as inputs

for another.

DAGs are expressed using a simple text-based format similar to

the one used by Condor DAGMan [8]. There are two record types

in a DAG file: TASK and EDGE. The format of a TASK record

is:

TASK id executable [arguments]

Where id is the ID of the task, executable is the path to the

executable or script to run, and arguments is an optional argument

string to pass to the task. The format of an EDGE record is:

EDGE parent child

Where parent is the ID of the parent task, and child is the ID of

the child task. Figure 2 shows an example DAG file that describes

a simple diamond-shaped workflow.

3.5 Workflow Execution

When the PMC job starts, the master marks all workers as idle,

parses the DAG file, and marks all tasks in the DAG that have no

parents as ready. For each idle worker, the master chooses an

arbitrary task, sends a message to the worker to assign the task,

and marks the worker as busy. The master continues until there

are no idle workers, or no more ready tasks. When a worker

receives a task message from the master, it forks a process to

execute the task, and sends the result back to the master when the

process exits. When the master receives a result message from one

of the workers, it marks the worker as idle, and processes the task.

If the task succeeded, then it is marked as complete and its

children are marked as ready. If the task failed, then it is either re-

tried, or marked as a failure.

Currently, the master uses a simple round-robin scheduling

approach to match tasks with workers on-demand. In the future

we plan to investigate more sophisticated scheduling and load

balancing techniques.

3.6 Failure Management

Many different types of errors can occur when executing a DAG.

One or more of the tasks in the DAG may fail, the PMC job may

Figure 2. Example diamond-shaped workflow (left) and

corresponding pegasus-mpi-cluster DAG file (right).

run out of wall time, the system may crash, etc. In order to ensure

that the workflow does not need to be restarted from the

beginning after an error, PMC generates a rescue file, which can

be used to recover the state of a failed workflow when it is

restarted.

The rescue file is a simple text file that lists all of the tasks in the

workflow that have finished successfully. This file is updated and

flushed to disk each time a task finishes so that it will always be

up-to-date if PMC terminates unexpectedly. As such, the rescue

file serves as a transaction log for the workflow.

A task is considered to have failed if it returns a non-zero exit

code, which indicates that the program called exit with a non-zero

value, or the program was killed because of an unhandled signal.

When a task fails, PMC can automatically retry it several times.

When all the retries of a task fail, then the task is marked as a

permanent failure and none of its child tasks can be executed.

When one or more tasks fail all retry attempts, PMC will attempt

to complete as much of the remaining workflow as possible before

itself exiting with a non-zero exit code to indicate that the

workflow has failed. When the workflow is retried, PMC is

restarted using the rescue file to skip any tasks that have already

been successfully completed.

3.7 Integration of pegasus-mpi-cluster into

the Pegasus Mapper

The clustered jobs in the Mapper have been traditionally

represented as a list of dependent jobs. For label-based clustering,

the sub graphs are topologically sorted to ensure correct ordering

of jobs when executed using pegasus-cluster. PMC allows the

system to exploit the parallelism present in the structure of the

subgraphs, when executing them as clustered jobs. To leverage

this existing capability we have changed the Pegasus Mapper to

represented clustered jobs as DAG’s themselves. Additionally, we

have introduced a pluggable interface in the Mapper that allows us

to use different types of executables to run the clustered job. To

integrate pegasus-mpi-cluster in Pegasus WMS we have

implemented an interface in the Mapper that allows us to wrap a

clustered job using pegasus-mpi-cluster. As a result, the user now

has an option to control both how the workflow should be

clustered (the technique to identify the clusters in the workflow)

and how to execute the clustered job (sequentially using pegasus-

cluster or in parallel using PMC).

Figure 3 shows a workflow where a subgraph (J2, J3, K1--Kn) is

marked by labeling the jobs with the same label. The Pegasus

Mapper when converting it into an executable workflow, uses

label based clustering to cluster the jobs with the same label into a

single job C1 (preserving the dependencies in the subgraph). The

C1 job is wrapped with PMC for execution. Hence, when the C1

job is submitted during workflow execution to a compute

resource, it appears as a single MPI job requesting n nodes and m

cores. PMC then executes the tasks in the job using the master

worker paradigm explained earlier. Figure 4 shows the end-to-end

process of taking a user provided workflow, mapping it to run on

XSEDE resources using PMC.

4. EXAMPLE APPLICATION:

CYBERSHAKE ON NICS KRAKEN

As part of its research program of earthquake system science, the

Southern California Earthquake Center (SCEC) has developed

CyberShake [14], a software platform which uses 3D waveform

modeling to perform probabilistic seismic hazard analysis

(PSHA). PSHA provides a technique for estimating the

Figure 3. Example workflow with jobs in a subgraph labeled with same label C1

and corresponding executable workflow after label based clustering (right).

probability that earthquake ground motions at a location of

interest will exceed some intensity measure, such as peak ground

velocity or spectral acceleration, over a given time period. PSHA

estimates are useful for civic planners, building engineers, and

insurance agencies. The basic CyberShake calculation produces

PSHA information for a single location of interest. The results

from multiple runs can be combined to produce a hazard map (see

Figure 5), quantifying the seismic hazard over a region.

The current CyberShake processing stream can be divided into

two phases. In the first phase, a mesh of approximately 2 billion

elements is constructed, populated with seismic velocity

information, and used in a pair of wave propagation simulations.

In the second phase, individual contributions from over 400,000

different earthquakes are calculated and aggregated to determine

the overall hazard. Each of these calculations is executed using

short-running serial codes, but about 840,000 task executions are

required for computing the hazard for a single location. The

extensive computational requirements and large numbers of

independent serial jobs necessitate a high degree of automation; as

a result, CyberShake utilizes scientific workflows for execution.

 Under Pegasus, CyberShake is set up as a set of hierarchical

workflows. The wave propagation simulation phase consists of a

few smaller jobs to prepare the inputs, and then two large parallel

MPI jobs to the actual wave propagation simulation. Next are the

seismogram workflows. The number of these can vary slightly but

in this case there are 78 workflows, each one with over 10,000

tasks. Targeting PCM execution, each complete seismogram

workflow was labeled with the same label to be executed with a

Figure 4. Distributing a large, fine-grained workflow across cluster resources at different sites. The large

workflow is partitioned into independent subgraphs, which are submitted as self-contained MPI jobs to the

remote sites. The MPI job uses the master-worker paradigm to farm out individual tasks to worker nodes.

Figure 5. UCERF2.0-based seismic hazard map of the Los

Angeles area showing the geographical variation in peak

spectral accelerations expected in the next 30 years when

using Campbell and Bozorgnia (2008) attenuation

single pegasus-mpi-cluster instance. As a result, the execution

sites would see 80 MPI jobs (two wave propagation simulations,

plus 78 PMC jobs). Figure 6 provides an overview of the

mapping.

CyberShake has been run successfully on a variety of systems and

architectures using Condor Glideins to enable the efficient

execution of the short-running serial jobs required by the

application [5]. Since SCEC science goals for 2012 include 700

CyberShake runs, the CyberShake team selected NICS Kraken as

a target resource due to its large core count and storage. Condor

Glideins are unable to run on the XT5 architecture, but PMC

enabled CyberShake processing to be performed on Kraken. The

CyberShake workflow was partitioned by labeling each of the 78

post processing workflows as individual partitions. Each of these

were executed using PMC using 40 core MPI jobs across 5 nodes.

Each node has 12 cores, but we only used 8 to get a specific

memory per core ratio required by the applications.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated that it is possible to

efficiently execute large, fine-grained scientific workflow

applications on petascale systems. Our approach involves

partitioning workflows into independent subgraphs, and then

executing each subgraph as a self-contained MPI job, leveraging

the existing parallel execution capabilities of petascale systems.

Using this approach, we have been able to run large CyberShake

post processing workflows that contain hundreds of thousands of

single core serial jobs on NICS Kraken.

We also found that our approach helped when interacting with

compute resource staff. Our previous approach, Condor Glideins,

usually required interaction with the staff to explain what the jobs

were doing, and sometimes special setups like opening up

firewalls were required. PMC is much easier to set up and requires

no interaction with system administrators because it is based on

standard MPI jobs and requires no special network configuration.

As a result, domain scientists can more easily adopt this approach

across a wide variety of existing systems.

The approach described in this paper is still in its initial stages and

there are several areas we plan to investigate in the future. Two

such areas are workflow graph partitioning and resource

estimation. In order to execute workflows using Pegasus and

PMC, the workflow DAG must be partitioned into subgraphs that

Figure 6. The CyberShake hierarchical workflow containing two wave propagation simulations

(SGTGen-X, SGTGen-Y) and 78 seismogram workflows. The figure shows the workflows being

mapped to 80 pegasus-mpi-cluster jobs for execution on NICS Kraken

can be clustered together and the resource requirements of these

subgraphs must be estimated in order to provide appropriate core

count and wall time parameters for the MPI jobs. These

parameters are critical because they have a significant impact on

application performance and resource utilization. Currently the

parameters are determined manually by the application developer

based on experience and trial and error. In the future we plan to

investigate graph partitioning techniques that can automatically

identify subgraphs of the workflow that can be executed

efficiently using PMC. We also plan to investigate resource

estimation techniques that can automatically determine the

number of cores and the amount of wall time to request for each

subgraph based on the structure of the subgraph and estimates of

the runtime of individual tasks.

6. ACKNOWLEDGEMENTS

We would like to thank the XSEDE user support staff and

especially Matt McKenzie at NICS for helping us setup and debug

the CyberShake workflows on Kraken.

Pegasus WMS is funded by the National Science Foundation

under the OCI SDCI program, grant OCI-0722019. CorralWMS is

funded by the National Science Foundation under the OCI-

0943725 grant.

This research was supported by the Southern California

Earthquake Center. SCEC is funded by NSF Cooperative

Agreement EAR-0529922 and USGS Cooperative Agreement

07HQAG0008. The SCEC contribution number for this paper is

1636.

The work described in this paper used the Extreme Science and

Engineering Discovery Environment (XSEDE), which is

supported by National Science Foundation grant number OCI-

1053575.

7. REFERENCES

[1] Altintas, I. et al. 2004. Kepler: an extensible system for

design and execution of scientific workflows. Scientific

and Statistical Database Management, 2004. Proceedings.

16th International Conference on (Jun. 2004), 423 – 424.

[2] Augonnet, C. et al. 2011. StarPU: a unified platform for

task scheduling on heterogeneous multicore architectures.

Concurrency and Computation: Practice and Experience.

23, 2 (2011), 187–198.

[3] Bosilca, G. et al. 2012. DAGuE: A generic distributed

DAG engine for High Performance Computing. Parallel

Comput. 38, 1-2 (Jan. 2012), 37–51.

[4] Bui, P. et al. 2011. Work Queue + Python: A Framework

For Scalable Scientific Ensemble Applications. Workshop

on Python for High Performance and Scientific

Computing. (2011).

[5] Callaghan, S. et al. 2011. Metrics for heterogeneous

scientific workflows: A case study of an earthquake

science application. International Journal of High

Performance Computing Applications. 25, 3 (2011), 274 –

285.

[6] Casajus, A. et al. 2010. DIRAC pilot framework and the

DIRAC Workload Management System. Journal of

Physics: Conference Series. 219, 6 (Apr. 2010).

[7] Chervenak, A.L. et al. 2009. The Globus Replica Location

Service: Design and Experience. IEEE Trans. Parallel

Distrib. Syst. 20, 9 (Sep. 2009), 1260–1272.

[8] Condor DAGMan (Directed Acyclic Graph Manager):

http://research.cs.wisc.edu/condor/dagman/.

[9] Cosnard, M. et al. 2004. Compact DAG representation and

its symbolic scheduling. J. Parallel Distrib. Comput. 64, 8

(2004), 921–935.

[10] Deelman, E. et al. 2005. Pegasus: a framework for

mapping complex scientific workflows onto distributed

systems. Scientific Programming Journal. 13, (2005), 219–

237.

[11] Fahringer, T. et al. 2005. ASKALON: a tool set for cluster

and Grid computing: Research Articles. Concurr.

Comput. : Pract. Exper. 17, 2-4 (2005), 143–169.

[12] Frey, J. et al. 2001. Condor-G: a computation management

agent for multi-institutional grids. High Performance

Distributed Computing, 2001. Proceedings. 10th IEEE

International Symposium on (2001), 55–63.

[13] Goux, J.-P. et al. 2000. An enabling framework for master-

worker applications on the Computational Grid. High-

Performance Distributed Computing, 2000. Proceedings.

The Ninth International Symposium on (2000), 43–50.

[14] Graves, R. et al. 2011. CyberShake: A Physics-Based

Seismic Hazard Model for Southern California. Pure and

Applied Geophysics. 168, 3 (Mar. 2011), 367–381.

[15] Juve, G. et al. 2010. Experiences with resource

provisioning for scientific workflows using Corral. Sci.

Program. 18, 2 (2010), 77–92.

[16] Maeno, T. 2008. PanDA: distributed production and

distributed analysis system for ATLAS. Journal of

Physics: Conference Series. 119, 6 (2008), 062036.

[17] Moscicki, J.T. 2003. DIANE - distributed analysis

environment for GRID-enabled simulation and analysis of

physics data. Nuclear Science Symposium Conference

Record, 2003 IEEE (Oct. 2003), 1617 – 1620 Vol.3.

[18] Oinn, T. et al. 2006. Taverna: lessons in creating a

workflow environment for the life sciences. Concurrency

and Computation: Practice and Experience. 18, 10 (2006),

1067–1100.

[19] Perez, J.M. et al. 2008. A dependency-aware task-based

programming environment for multi-core architectures.

Cluster Computing, 2008 IEEE International Conference

on (Oct. 2008), 142 –151.

[20] Raicu, I. et al. 2007. Falkon: a Fast and Light-weight tasK

executiON framework. (2007).

[21] Rynge, M. et al. 2011. Experiences Using GlideinWMS

and the Corral Frontend across Cyberinfrastructures. E-

Science (e-Science), 2011 IEEE 7th International

Conference on (Dec. 2011), 311 –318.

[22] Sfiligoi, I. et al. 2009. The Pilot Way to Grid Resources

Using glideinWMS. Computer Science and Information

Engineering, 2009 WRI World Congress on (2009), 428–

432.

[23] Singh, G. et al. 2008. Workflow task clustering for best

effort systems with Pegasus. Mardi Gras Conference’08

(2008), -1–1.

[24] Taylor, I. et al. 2005. Visual Grid Workflow in Triana.

Journal of Grid Computing. 3, 3 (Sep. 2005), 153–169.

[25] Zhao, H. and Sakellariou, R. 2007. Advance reservation

policies for workflows. Proceedings of the 12th

international conference on Job scheduling strategies for

parallel processing (Saint-Malo, France, 2007), 47–67.

