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ABSTRACT 
Computational scientists often need to execute large, loosely-

coupled parallel applications such as workflows and bags of tasks 

in order to do their research. These applications are typically 

composed of many, short-running, serial tasks, which frequently 

demand large amounts of computation and storage. In order to 

produce results in a reasonable amount of time, scientists would 

like to execute these applications using petascale resources. In the 

past this has been a challenge because petascale systems are not 

designed to execute such workloads efficiently. In this paper we 

describe a new approach to executing large, fine-grained 

workflows on distributed petascale systems. Our solution involves 

partitioning the workflow into independent subgraphs, and then 

submitting each subgraph as a self-contained MPI job to the 

available resources (often remote). We describe how the 

partitioning and job management has been implemented in the 

Pegasus Workflow Management System. We also explain how 

this approach provides an end-to-end solution for challenges 

related to system architecture, queue policies and priorities, and 

application reuse and development. Finally, we describe how the 

system is being used to enable the execution of a very large 

seismic hazard analysis application on XSEDE resources. 

 

Categories and Subject Descriptors 
F.1.2 [Computation by Abstract Device]: Modes of 

Computation – Parallelism and concurrency 

General Terms 
Algorithms, Management, Reliability 

Keywords 
Workflow management, task clustering 

1. INTRODUCTION 

Many computational scientists need to execute large-scale, 

loosely-coupled applications in order to do their research. These 

applications are often structured as scientific workflows that 

consist of a few large parallel tasks surrounded by a large number 

of small, serial tasks used for pre- and post-processing. Although 

the majority of the individual tasks within these applications are 

relatively small (less than a few minutes in runtime), in aggregate 

they represent a significant amount of computation and data. Such 

fine-grained workflows frequently contain tens of thousands of 

tasks, and workflows with up to a few million tasks are not 

uncommon [5]. Together, these tasks may require many tens of 

thousands of CPU hours of computation and process many 

terabytes of data. 

In order to complete these large-scale computations in a 

reasonable amount of time, large-scale compute and storage 

resources are required. Scientists would like to take advantage of 

state-of-the-art petascale systems such as NICS Kraken and 

NCSA Blue Waters to reduce their time to solution, but these 

systems and systems like them are typically not optimized to 

execute loosely-coupled workloads efficiently. There are several 

challenges related to software, scheduling, and networking that 

must be overcome in order to make this possible. 
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The first challenge scientists face when running loosely coupled 

jobs on petascale systems is working with software from a variety 

of diverse sources. Computational scientists often need to 

integrate multiple scientific codes into pipelines and workflows in 

order to achieve their goals. These codes are often developed by 

different teams, over a long period of time, and have been 

carefully validated to ensure they are scientifically correct, so 

modifying them to be parallel codes is usually not feasible. 

Although some optimizations and smaller code changes can be 

performed, writing new software from scratch to better fit the 

programming models typically used on petascale systems is often 

not an option. Scientists need to make existing codes work within 

the execution environment provided by the resources. 

Another major challenge users face when running loosely-coupled 

applications on petascale systems is that most petascale systems 

are highly optimized for running large, monolithic, parallel jobs 

such as MPI codes. Over the past decade, there have been many 

changes in the system architecture of compute clusters. For 

example, during TeraGrid and now into XSEDE, the available 

systems have progressed from traditional Linux clusters to more 

specialized environments, such as the Cray XT System 

Environment. The traditional clusters were composed of relatively 

generic server-class machines with IA64, x86 or x86_64 

processors running standard Linux distributions. On such clusters, 

mixed MPI/serial workloads could be supported using tools such 

as Condor Glideins [12][15]. In contrast, on newer systems the 

hardware and software architectures are highly optimized for 

running parallel applications. For example, when a job is 

submitted on the Cray XT5 (NICS Kraken), rather than starting on 

the compute nodes, the job script runs on a service node. In that 

script, the user can execute the aprun command to access a second 

level scheduler called ALPS (Application Level Placement 

Scheduler), which handles the placement and execution of parallel 

processes. In addition, there are significant differences between 

the traditional clusters and systems like the Cray XT5 at the node 

level. The former has, in many cases, a complete Linux 

environment with a full suite of tools running on the compute 

nodes, while the Cray has a very minimal kernel with almost no 

system tools available, and no shared libraries. Similarly, a 

traditional cluster usually has compute nodes with full IPv4/6 

networking support in addition to high-speed interconnects such 

as Infiniband. Sometimes nodes on traditional clusters even have 

public IPs. In contrast, networking on Cray compute nodes is 

usually limited to system-local connections over a custom, 

vendor-specific interconnect. These differences significantly limit 

the scientists’ choice of tools to use for executing loosely-coupled 

applications. Many existing high throughput computing tools, 

including Condor Glideins, depend on a basic set of system tools 

and the ability to make outbound IP network connections, which 

makes the tools a poor fit for these petascale systems. 

Another challenge facing scientists that want to run loosely 

coupled jobs on petascale systems is scheduling policies. Similar 

to their architectures, the queue policies and job priorities of 

petascale systems reflect their preference for large parallel jobs. 

Many systems place a limit of the number of simultaneous jobs a 

user can have in the queue and/or have running. On NICS Kraken, 

for example, a user is only allowed to have 5 running jobs and 5 

ready to run jobs in the queue. If more than 5 jobs are submitted, 

they will be placed in a blocked state and not considered by the 

scheduler. Also, Kraken gives jobs with over 32,000 cores the 

highest priority and considers jobs with smaller core counts as 

backfill. Note that we do not disagree with these policies, we are 

simply pointing out that they pose a challenge when trying to run 

workloads that contain of a large number of serial tasks. 

Previous approaches to solving these problems have limitations 

that reduce their effectiveness. Task clustering [23] reduces 

scheduling overheads and queuing delays by grouping several 

tasks into a single job, which increases throughput, but often 

reduces parallelism by forcing independent tasks to be executed in 

serial. Advance reservations [25] eliminate queuing delays by 

giving users exclusive access to a set of resources for a limited 

amount of time, but are not supported on many systems and have 

a negative impact on resource utilization and QoS. Pilot jobs 

[15][20][6][16][7] enable more efficient application-level 

scheduling, but require direct network access to compute nodes, 

which is often not feasible due to the use of firewalls, private 

networks, and compute nodes with highly customized networks. 

In this paper we describe a new approach to scheduling large, 

fine-grained workflows on petascale systems. Our approach 

involves partitioning large, loosely-coupled workflows into 

independent subgraphs, and then executing each subgraph as a 

self-contained MPI job. This approach has been implemented in 

the Pegasus Workflow Management System [10] using a new 

MPI-based master/worker task scheduling tool called pegasus-

mpi-cluster (PMC). In the remainder of this paper, we describe 

how PMC enables us to run large-scale, fine-grained grid 

workflows on petascale systems. We also describe an example 

application, the Southern California Earthquake Center (SCEC) 

CyberShake workflow, which is being deployed on the NICS 

Kraken system using Pegasus and PMC. 

2. RELATED WORK 

Workflow systems such as Askalon [11], Taverna [18], Triana 

[24], Kepler [1], and Condor DAGMan [8] are designed to run 

scientific workflows on the grid. These systems typically assume 

workflow tasks can be submitted to clusters remotely. Although 

the majority of resources available through XSEDE and other 

grids can be accessed using grid middleware such as Globus, 

these interfaces do not provide the level of throughput required for 

very fine-grained workflow tasks. In addition, grid middleware 

submits tasks directly to the local scheduler, which is often not 

capable of scheduling a large number of small tasks efficiently. 

Grid-based master-worker systems such as Condor MW [13], 

Work Queue [4], Falkon [20], Condor Glideins [12][15][22] and 

pilot job frameworks [17][16][6] have been used to enable high-

throughput scheduling of fine-grained tasks in grids. These 

systems start worker processes on remote clusters using standard 

batch jobs, and distribute tasks to those workers from a central 

master process running outside the target cluster. This approach 

allows these systems to achieve better throughput by bypassing 

the normal scheduling path, which is typically not optimized for 

small tasks. The problem with this approach is that it requires 

direct TCP connections from the master to the target cluster’s 

compute nodes. This is not feasible on many clusters because of 

security concerns, firewalls, private networks, and a lack of TCP 

stacks on compute nodes. 

DAGs and other task graph representations are used as the 

programming model for many parallel applications because they 

are effective in expressing and optimizing irregular computations 

[3][2][9][19]. These applications are typically decomposed into 

function-level tasks that perform very fine-grained computations 

and access small amounts of data stored in memory. In 

comparison, the workflow applications we are targeting in this 

work are composed of relatively coarse-grained, process-level 



 

 

tasks that access much larger data sets stored in a shared file 

system. 

3. APPROACH 

3.1 Pegasus Workflow Management System 

The Pegasus Workflow Management System [10] is used by 

scientists to execute large-scale computational workflows on a 

variety of cyberinfrastructure ranging from local desktops to 

campus clusters, grids, and commercial and academic clouds, as 

shown in Figure 1. Pegasus enables scientists to compose abstract 

workflows without worrying about the details of the underlying 

execution environment or the particulars of the low-level 

specifications required by the middleware (Condor, Globus, or 

Amazon EC2). First, scientists create data stores that contain 

information about the data files and transformations used in the 

calculation (RLS [7] and transformation catalog) and information 

about the available computing resources (called site catalog). 

Then the scientist provides an abstract representation, a directed 

acyclic graph (DAG), which may contain sets of different tasks. 

For example, some tasks may be embarrassingly parallel, while 

others may have complex dependencies. Pegasus takes in this 

abstract workflow and generates an executable workflow based on 

information about available resources. The system is composed of 

three components: 

 Mapper (Pegasus Mapper): Generates an executable 

workflow based on an abstract workflow provided by the 

user or workflow composition system. It finds the 

appropriate software, data, and computational resources 

required for workflow execution. The Mapper also 

restructures the workflow to optimize performance and adds 

transformations for data management and provenance 

information generation. 

 Execution Engine (Condor DAGMan): Executes the tasks 

defined by the workflow in order of their dependencies. 

DAGMan relies on the resources (compute, storage and 

network) defined in the executable workflow to perform the 

necessary actions. 

 Scheduler/Task manager (Condor Schedd): manages 

individual workflow tasks: supervises their execution on 

local and remote resources. 

3.2 Executing Large Workflows on 

Distributed Resources 

When executing large workflows on distributed 

cyberinfrastructure, the Pegasus Mapper usually partitions 

workflows into manageable clusters that can be executed as single 

units. The restructuring of the workflow done by the Mapper 

helps reduce the scheduling overhead of short running jobs. 

Additionally, on resources with queue policies limiting the 

number of jobs a user is allowed to have in the queue, clustering 

can increase throughput. The Mapper also adds data management 

processes (new workflow nodes) to the executable workflow that 

stage in the input data required for these clusters of jobs and ship 

out the output data from the execution sites. The Pegasus Mapper 

can be configured to use different types of graph clustering 

techniques to determine how the jobs are clustered and also what 

executables to use for the clustered job. Some of the supported 

clustering techniques are listed below: 

1. Horizontal - The Mapper clusters jobs on the same level of 

the workflow. The level for a job is determined by doing a 

Breadth First Search of the underlying DAG. The number of 

jobs that are clustered into a clustered job is determined by 

 

 

Figure 1. Pegasus Workflow Management System provides support for running  

scientific workflows using many types of computing resources currently available. 

 



 

 

user provided configuration parameters for different job 

types.   

2. Runtime-based Horizontal Clustering - In this technique 

the Mapper looks at the expected runtimes of the jobs and 

does the grouping of the jobs on the same level of the 

workflow based on the maxruntime specified by the user for 

each job type. 

3. Label-based Clustering - In this technique, the user 

identifies subgraphs in the abstract workflow description that 

they want to execute as one cluster. This is achieved by user 

associating labels with the jobs. Jobs associated with the 

same label are put in by Pegasus into the same cluster. 

Workflows using previous versions of Pegasus WMS have 

traditionally used pegasus-cluster, a C executable that runs 

clustered jobs sequentially on a node. pegasus-cluster allows us to 

reduce the scheduling overhead of running lots of short running 

jobs as part of the workflow. However, since pegasus-cluster can 

only run jobs sequentially on a single node, it does not allow us to 

efficiently schedule tasks on the thousands of cores available on 

large systems, especially with per user job queue limits in place.  

In the past, we have used Condor Glideins [12][15][22][21]  to 

overlay a Condor pool on top of resources. Condor Glideins start 

worker processes on remote clusters using standard batch jobs, 

and distribute tasks to those workers from a central master process 

running outside the target cluster. The problem with this approach 

is that it requires direct TCP connections from the cluster compute 

nodes to the central master. This is not feasible on many of the 

large clusters, so we wanted a self-contained solution, which 

would not require networking to the outside of the cluster. 

3.3 Pegasus MPI Cluster 

In order to efficiently use petascale systems for large workflow 

applications, and to address the system architecture and network 

issues outlined above, we have developed an MPI-based task 

management tool called pegasus-mpi-cluster (PMC). Using MPI 

enables us to leverage the underlying network communications 

libraries through a common interface that is portable across 

cutting-edge cyberinfrastructure. 

A PMC job consists of a single master process (this process is 

rank 0 in MPI parlance) and several worker processes. These 

processes follow the standard master-worker architecture. The 

master process manages the workflow and assigns workflow tasks 

to workers for execution. The workers execute the tasks and 

return the results to the master. Communication between the 

master and the workers is accomplished using a simple text-based 

protocol implemented using MPI_Send and MPI_Recv. 

In order for this approach to work, the target system must have a 

shared file system to enable the workers to access the executable 

specified in the workflow, read the workflow input data, and store 

workflow output data, and the system’s compute nodes must 

allow the worker processes to fork additional processes to execute 

the tasks. We believe that these requirements are satisfied by most 

or all of the systems currently available through XSEDE and the 

DOE, and by upcoming systems such as Blue Waters. 

3.4 Workflow Descriptions 

PMC jobs are expressed as a Directed Acyclic Graph (DAG). 

Each node in the DAG represents a workflow task, and the edges 

represent dependencies between the tasks that constrain the order 

in which the tasks are executed. Each task is a program and a set 

of parameters that need to be executed. The dependencies 

typically represent data flow dependencies in the application, 

where the output files produced by one task are needed as inputs 

for another. 

DAGs are expressed using a simple text-based format similar to 

the one used by Condor DAGMan [8]. There are two record types 

in a DAG file: TASK and EDGE. The format of a TASK record 

is: 

TASK id executable [arguments] 

Where id is the ID of the task, executable is the path to the 

executable or script to run, and arguments is an optional argument 

string to pass to the task. The format of an EDGE record is: 

EDGE parent child 

Where parent is the ID of the parent task, and child is the ID of 

the child task. Figure 2 shows an example DAG file that describes 

a simple diamond-shaped workflow. 

 

3.5 Workflow Execution 

When the PMC job starts, the master marks all workers as idle, 

parses the DAG file, and marks all tasks in the DAG that have no 

parents as ready. For each idle worker, the master chooses an 

arbitrary task, sends a message to the worker to assign the task, 

and marks the worker as busy. The master continues until there 

are no idle workers, or no more ready tasks. When a worker 

receives a task message from the master, it forks a process to 

execute the task, and sends the result back to the master when the 

process exits. When the master receives a result message from one 

of the workers, it marks the worker as idle, and processes the task. 

If the task succeeded, then it is marked as complete and its 

children are marked as ready. If the task failed, then it is either re-

tried, or marked as a failure. 

Currently, the master uses a simple round-robin scheduling 

approach to match tasks with workers on-demand. In the future 

we plan to investigate more sophisticated scheduling and load 

balancing techniques. 

3.6 Failure Management 

Many different types of errors can occur when executing a DAG. 

One or more of the tasks in the DAG may fail, the PMC job may 

 

Figure 2. Example diamond-shaped workflow (left) and 

corresponding pegasus-mpi-cluster DAG file (right). 

 



 

 

run out of wall time, the system may crash, etc. In order to ensure 

that the workflow does not need to be restarted from the 

beginning after an error, PMC generates a rescue file, which can 

be used to recover the state of a failed workflow when it is 

restarted. 

The rescue file is a simple text file that lists all of the tasks in the 

workflow that have finished successfully. This file is updated and 

flushed to disk each time a task finishes so that it will always be 

up-to-date if PMC terminates unexpectedly. As such, the rescue 

file serves as a transaction log for the workflow. 

A task is considered to have failed if it returns a non-zero exit 

code, which indicates that the program called exit with a non-zero 

value, or the program was killed because of an unhandled signal. 

When a task fails, PMC can automatically retry it several times. 

When all the retries of a task fail, then the task is marked as a 

permanent failure and none of its child tasks can be executed. 

When one or more tasks fail all retry attempts, PMC will attempt 

to complete as much of the remaining workflow as possible before 

itself exiting with a non-zero exit code to indicate that the 

workflow has failed. When the workflow is retried, PMC is 

restarted using the rescue file to skip any tasks that have already 

been successfully completed. 

3.7 Integration of pegasus-mpi-cluster into 

the Pegasus Mapper 

The clustered jobs in the Mapper have been traditionally 

represented as a list of dependent jobs.  For label-based clustering, 

the sub graphs are topologically sorted to ensure correct ordering 

of jobs when executed using pegasus-cluster.  PMC allows the 

system to exploit the parallelism present in the structure of the 

subgraphs, when executing them as clustered jobs. To leverage 

this existing capability we have changed the Pegasus Mapper to 

represented clustered jobs as DAG’s themselves. Additionally, we 

have introduced a pluggable interface in the Mapper that allows us 

to use different types of executables to run the clustered job.  To 

integrate pegasus-mpi-cluster in Pegasus WMS we have 

implemented an interface in the Mapper that allows us to wrap a 

clustered job using pegasus-mpi-cluster. As a result, the user now 

has an option to control both how the workflow should be 

clustered (the technique to identify the clusters in the workflow) 

and how to execute the clustered job (sequentially using pegasus-

cluster or in parallel using PMC). 

Figure 3 shows a workflow where a subgraph (J2, J3, K1--Kn) is 

marked by labeling the jobs with the same label. The Pegasus 

Mapper when converting it into an executable workflow, uses 

label based clustering to cluster the jobs with the same label into a 

single job C1 (preserving the dependencies in the subgraph). The 

C1 job is wrapped with PMC for execution. Hence, when the C1 

job is submitted during workflow execution to a compute 

resource, it appears as a single MPI job requesting n nodes and m 

cores. PMC then executes the tasks in the job using the master 

worker paradigm explained earlier. Figure 4 shows the end-to-end 

process of taking a user provided workflow, mapping it to run on 

XSEDE resources using PMC. 

4. EXAMPLE APPLICATION: 

CYBERSHAKE ON NICS KRAKEN 

As part of its research program of earthquake system science, the 

Southern California Earthquake Center (SCEC) has developed 

CyberShake [14], a software platform which uses 3D waveform 

modeling to perform probabilistic seismic hazard analysis 

(PSHA).  PSHA provides a technique for estimating the 

 

Figure 3. Example workflow with jobs in a subgraph labeled with same label C1  

and corresponding executable workflow after label based clustering (right). 

 



 

 

probability that earthquake ground motions at a location of 

interest will exceed some intensity measure, such as peak ground 

velocity or spectral acceleration, over a given time period.  PSHA 

estimates are useful for civic planners, building engineers, and 

insurance agencies.  The basic CyberShake calculation produces 

PSHA information for a single location of interest.  The results 

from multiple runs can be combined to produce a hazard map (see 

Figure 5), quantifying the seismic hazard over a region.  

The current CyberShake processing stream can be divided into 

two phases.  In the first phase, a mesh of approximately 2 billion 

elements is constructed, populated with seismic velocity 

information, and used in a pair of wave propagation simulations. 

In the second phase, individual contributions from over 400,000 

different earthquakes are calculated and aggregated to determine 

the overall hazard.  Each of these calculations is executed using 

short-running serial codes, but about 840,000 task executions are 

required for computing the hazard for a single location. The 

extensive computational requirements and large numbers of 

independent serial jobs necessitate a high degree of automation; as 

a result, CyberShake utilizes scientific workflows for execution. 

 Under Pegasus, CyberShake is set up as a set of hierarchical 

workflows. The wave propagation simulation phase consists of a 

few smaller jobs to prepare the inputs, and then two large parallel 

MPI jobs to the actual wave propagation simulation. Next are the 

seismogram workflows. The number of these can vary slightly but 

in this case there are 78 workflows, each one with over 10,000 

tasks. Targeting PCM execution, each complete seismogram 

workflow was labeled with the same label to be executed with a 

 

Figure 4. Distributing a large, fine-grained workflow across cluster resources at different sites. The large 

workflow is partitioned into independent subgraphs, which are submitted as self-contained MPI jobs to the 

remote sites. The MPI job uses the master-worker paradigm to farm out individual tasks to worker nodes. 

 

 

Figure 5. UCERF2.0-based seismic hazard map of the Los 

Angeles area showing the geographical variation in peak 

spectral accelerations expected in the next 30 years when 

using Campbell and Bozorgnia (2008) attenuation 

 



 

 

single pegasus-mpi-cluster instance. As a result, the execution 

sites would see 80 MPI jobs (two wave propagation simulations, 

plus 78 PMC jobs). Figure 6 provides an overview of the 

mapping.  

CyberShake has been run successfully on a variety of systems and 

architectures using Condor Glideins to enable the efficient 

execution of the short-running serial jobs required by the 

application [5]. Since SCEC science goals for 2012 include 700 

CyberShake runs, the CyberShake team selected NICS Kraken as 

a target resource due to its large core count and storage. Condor 

Glideins are unable to run on the XT5 architecture, but PMC 

enabled CyberShake processing to be performed on Kraken. The 

CyberShake workflow was partitioned by labeling each of the 78 

post processing workflows as individual partitions. Each of these 

were executed using PMC using 40 core MPI jobs across 5 nodes. 

Each node has 12 cores, but we only used 8 to get a specific 

memory per core ratio required by the applications.  

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we have demonstrated that it is possible to 

efficiently execute large, fine-grained scientific workflow 

applications on petascale systems. Our approach involves 

partitioning workflows into independent subgraphs, and then 

executing each subgraph as a self-contained MPI job, leveraging 

the existing parallel execution capabilities of petascale systems. 

Using this approach, we have been able to run large CyberShake 

post processing workflows that contain hundreds of thousands of 

single core serial jobs on NICS Kraken. 

We also found that our approach helped when interacting with 

compute resource staff. Our previous approach, Condor Glideins, 

usually required interaction with the staff to explain what the jobs 

were doing, and sometimes special setups like opening up 

firewalls were required. PMC is much easier to set up and requires 

no interaction with system administrators because it is based on 

standard MPI jobs and requires no special network configuration. 

As a result, domain scientists can more easily adopt this approach 

across a wide variety of existing systems. 

The approach described in this paper is still in its initial stages and 

there are several areas we plan to investigate in the future. Two 

such areas are workflow graph partitioning and resource 

estimation. In order to execute workflows using Pegasus and 

PMC, the workflow DAG must be partitioned into subgraphs that 

 

Figure 6. The CyberShake hierarchical workflow containing two wave propagation simulations 

(SGTGen-X, SGTGen-Y) and 78 seismogram workflows. The figure shows the workflows being 

mapped to 80 pegasus-mpi-cluster jobs for execution on NICS Kraken 

 



 

 

can be clustered together and the resource requirements of these 

subgraphs must be estimated in order to provide appropriate core 

count and wall time parameters for the MPI jobs. These 

parameters are critical because they have a significant impact on 

application performance and resource utilization. Currently the 

parameters are determined manually by the application developer 

based on experience and trial and error. In the future we plan to 

investigate graph partitioning techniques that can automatically 

identify subgraphs of the workflow that can be executed 

efficiently using PMC. We also plan to investigate resource 

estimation techniques that can automatically determine the 

number of cores and the amount of wall time to request for each 

subgraph based on the structure of the subgraph and estimates of 

the runtime of individual tasks. 
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