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Abstract Scientific workflows have received considerable attention in Grid comput-
ing. This paper is concerned with the issue of scheduling scientific workflows and,
by considering a commonly used astronomy workflow, Montage,investigates the
impact of different strategies to schedule the workflow graph. Our experiments sug-
gest that the rather regular and symmetric nature of the Montage graph allows rather
simple to implement scheduling heuristics that do not take into account the whole
structure of the graph, such as Min-min, to deliver competitive performance in most
cases of interest. The results support the view that sophisticated graph scheduling
heuristics may not be always a prerequisite for good performance in workflow exe-
cution. Instead, mechanisms to deal with uncertainties in execution time may be of
comparatively higher importance.
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1 Introduction

A number of scientific applications consist of individual, standalone application
components, each often independently designed and developed, which are then
combined in pre-defined ways to perform large-scale scientific analysis. In recent
years,scientific workflows[9, 22] have been used to refer to the process of bringing
the individual components together and specifying their interactions in a systematic

Rizos Sakellariou
School of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom,
e-mail: rizos@cs.man.ac.uk

Henan Zhao
School of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom

Ewa Deelman
USC Information Sciences Institute, 4676 Admiralty Way, Marina Del Rey, CA90292, USA

1



2 Rizos Sakellariou and Henan Zhao and Ewa Deelman

way. Once a scientific workflow (or simply workflow) has been assembled, a key
problem that needs to be addressed relates tomappingthe components of the work-
flow onto distributed resources, that is, what node of the graph is going to execute on
what resource. This problem needs to take into account all constraints (for instance,
some components may have to execute on specific nodes) as wellas to optimize
for various objectives such as the overall completion time of the workflow, resource
usage, (monetary) cost of using the resources, etc.

Since most known types of workflows appear to be typically represented by a Di-
rected Acyclic Graph (DAG), there has been a considerable amount of work trying to
solve this workflow mapping problem using DAG scheduling heuristics [4, 25, 27].
Such heuristics generally aim at minimizing the cost of running the critical path
of the graph. However, it has been argued [12] that such heuristics, although worth-
while, might not be substantially more efficient in the particular context of workflow
scheduling on the grid; their benefits might be outweighed bytheir additional com-
plexity. This argument can be reinforced by the easy to make observation that DAGs
representing many real-world workflow applications seem tohave a somewhat reg-
ular and symmetric structure. As a consequence, simple scheduling approaches,
which do not consider the whole structure of the DAG at once, might be a good
alternative for workflow scheduling. Following the broad classification in [4, 26],
we term the latter approaches aslocal (or task-based), since their decision making
strategy relies on locally optimal choices, as opposed toglobal (or workflow-based
according to [4]) strategies that consider the whole structure of the graph.

To the best of our knowledge, there has been only limited worktrying to evalu-
ate and quantify the advantages and disadvantages of local strategies versus global
strategies when mapping workflows on the grid. In [4], it has been found that the dif-
ference in the makespan between a global and a local strategyusing the well-known
Montage workflow [2, 17] was less than 0.3%. However, the difference would in-
crease to more than 100% for data-intensive workflows, wherethe communication
cost would dominate computation (see Table 1 in [4]). In contrast, the experimental
study in [12] has indicated that a simple local strategy can also cope with data-
intensive cases and high communication to computation cost; however, the authors
of this study notice limitations for the local strategy in the case of sparse DAGs,
which are due to the small degree of parallelism or the small number of dependen-
cies amongst the tasks.

In this paper, we contribute to the quantitative evaluationof the advantages and
disadvantages of local versus global strategies by considering the impact ofun-
certainty in workflow mapping, using, in our study, a workflow that implements
a widely mentioned astronomy application to build mosaics of the sky, Mon-
tage [2, 17]. Since the initial mapping decisions for the workflow are made on the
basis of static estimates, a key factor in the evaluation of the performance of local
vs global strategies is how well the initial mapping onto resources performs when
there are deviations from the estimated execution time of each task.1 The ability of

1 Such deviations, from the initially estimated execution time, may be due to any reason: wrong
prediction, resource load, etc. In principle, these deviations can be corrected at run-time using, for
example, rescheduling [21] or adaptive [14] techniques. However, there is also a need to minimize



Mapping Workflows on Grid Resources: Experiments with the Montage Workflow 3

a scheduling algorithm to produce a schedule that is affected as little as possible
by run-time changes is known asrobustnessand, for limited degrees of uncertainty,
has been studied elsewhere [7]. In this paper, we use large degrees of uncertainty,
which include actual execution times that may be up to 4 timeshigher than initially
estimated (these times can also be shorter than the estimates). Our simulation results
validate our hypothesis: when using Montage, variations between local and global
workflow mapping strategies are insignificant (at most about3.5%) and appear to be
consistent regardless of the degree of uncertainty with respect to the initial execution
times estimates. Instead, by using a tweaked version of the Montage DAG, with a
smaller number of edges, and longer parallel paths in the graph, the variation in ex-
ecution time between local and global workflow mapping strategies becomes more
profound, up to about 12%. This indicates some correlation of the performance of
these mapping strategies strategies with the type of the DAGthey are applied to.

The remainder of the paper is structured as follows. Section2 provides some
background on the problem of DAG/workflow scheduling and relevant heuristics.
Section 3 gives a motivating example that highlights the possible differences in per-
formance that some heuristics may exhibit depending on the structure of the graph
considered. Section 4 is trying to assess the possible differences in performance be-
tween a local, task-based, approach and a global, workflow-based, approach when
scheduling Montage [10], a commonly cited application usedin astronomy to create
a large mosaic image of the sky from many smaller astronomical images. Finally,
Section 5 concludes the paper.

2 Background

The model used for the representation of a workflow is a Directed Acyclic Graph
(DAG), where nodes (or tasks) represent computation and edges represent data or
control flow dependences between nodes. A set of machines is assumed to be al-
ready available and known. These machines and the network links between them
are heterogeneous: tasks may need a different amount of timeto execute on each
machine and the transmission of data between different machines is not the same. A
machine can execute only one task at a time, and a task cannot start execution until
all data from its parent nodes is available. The scheduling problem is to assign the
tasks onto machines so that precedence constraints are respected and the makespan
is minimized.

In order to be able to make sensible scheduling decisions, itis assumed that
information about the estimated execution time of each taskon each machine is
available. In addition, it is assumed that there are estimates about the speed of the
links connecting the machines available. This information, used in conjunction with
the amount of data that may need to be transferred before a task starts its execution,

the overhead associated with rescheduling and/or adaptivity and keep the number of times when
such an action occurs small. Our work focuses on how the initial workflow mapping decisions can
help in this respect.
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can provide an estimate about the earliest possible start time of a task whose parents
have finished their execution.

The problem of scheduling DAGs onto parallel resources is well studied in the lit-
erature [13]. In recent years, partly as a result of the emergence of Grid systems and
applications such as workflows, additional research has focused on DAG scheduling
algorithms for heterogeneous systems [20, 23, 27], as well as their performance in
the context of the uncertainties typically associated withthe actual execution time of
tasks [7, 11, 15, 21]. A growing amount of work has also evaluated DAG scheduling
algorithms in the context of specific workflow applications [4, 16, 24].

As already mentioned, it is common to classify DAG scheduling algorithms ac-
cording to whether scheduling decisions are madelocally, with reference to just
a task or a set of tasks, orglobally, with reference to the whole DAG (work-
flow) [4, 26]. A commonly used heuristic in the former class (task-based) isMin-
min, originally developed in the context of scheduling independent tasks [5]. This
can also be applied in the context of scheduling DAGs, since,at any point in time,
the tasks that are considered to be eligible for scheduling are, by definition, indepen-
dent. This is because the eligible tasks are tasks whose datais available, hence, their
parents have finished execution. The key idea of Min-min is tofind, for each eligible
task, the machine that gives the earliest completion time for this task. Then, the task
with the minimum earliest completion time is chosen for scheduling. The process is
then repeated with the remaining task as well as any new tasksthat become eligi-
ble (as a result of the completion of their parents). As noticed in [4], “the intuition
behind this heuristic is that the makespan increases the least at each iterative step,
hopefully resulting in a small makespan for the whole workflow”.

A commonly cited global heuristic in the context of DAG scheduling for hetero-
geneous systems is HEFT [23]. HEFT first orders tasks by assigning a value to each
task. This value roughly corresponds to the cost to reach theexit node from this
task. Then, tasks are scheduled using this order to the machine that gives the earli-
est completion time. The key idea (of thislist schedulingbased heuristic [18]) is to
give higher priority to tasks on the critical path. Several variations to assign weights
and prioritize the tasks have been studied in [28]. Following observations about the
impact of such variations, HBMCT [20] tries to improve the performance of HEFT
by relaxing the requirement to schedule tasks in a strict order of their ranking, con-
sidering groups of independent tasks. Among the global heuristics, it is also worth
mentioning the workflow-based allocation algorithm (WBA) [4], which compares
several alternative workflow schedules before the final schedule is chosen, based on
a generalized greedy randomized adaptive search procedure.

Typically, heuristics that make decisions locally (task-based) are simpler and
faster, whereas heuristics that make decisions globally, with reference to the whole
workflow (workflow-based), have the potential to produce a shorter makespan at the
expense of increased complexity. Such a potentially shorter makespan is a conse-
quence of their ability to consider the whole graph at once and, hence, give appro-
priate priority in execution to tasks in the critical path. The hypothesis considered in
this paper, however, is that the regular and symmetric structure of scientific work-



Mapping Workflows on Grid Resources: Experiments with the Montage Workflow 5

flows does not stand to benefit from global heuristics. To illustrate the impact that
the structure of the graph may have, we present two examples in the next section.

3 A Motivating Example

The simplicity of local, task-based approaches as opposed to the shorter makespan
expected to be produced by a global, workflow-based approachis the key trade-off to
assess when selecting the heuristic that would be more suitable to schedule a certain
application. In the context of arbitrary DAGs, global heuristics, which are capable
of tracking the critical path, are expected to give better performance. However, it is
questionable whether the examples of scientific workflows that exist can be regarded
asarbitrary DAGs. Instead, all the evidence available seems to suggest that many
scientific workflows have a regular and rather symmetric structure. Many appear
to consist of sequences of fan-out (where the output of a taskis input to several
children) and fan-in (where the output of several tasks is aggregated by a child).
Typically, the outcome of fan-out procedures is identical tasks that simply operate
on different data (indicating the exploitation of data parallelism). For examples, we
refer to workflows such as Montage (see Figure 9 in [10]), Chimera (see Figures 6
and 7 in [1]), LIGO (see Figure 4 in [19]), WIEN2k (see Figure 6in [24]), Invmod
(see Figure 7 in [24]) and AIRSN (see Figure 5 in [29]) as well as the workflows
studied in [3].

In order to illustrate the possible differences in the schedule resulting from a lo-
cal heuristic, Min-min, and a global heuristic, HBMCT, and how they are affected
by the structure of the graph, consider the examples in Figures 1 and 2. The graph
in Figure 1 has a rather regular, symmetric structure. We view it as regular because
it consists of a sequence of fan-out and fan-in (repeated twice) and symmetric be-
cause the independent subgraphs created during the fan-outprocedure are identical
(in terms of their structure). In addition, the execution time of the tasks on three
different machines, M0, M1, M2, is similar, although not always identical (see the
table at the top right of the figure), while the cost of sendingdata from one task
to another (when these tasks are executed on different machines) is set to 8 time
units. The schedule produced by Min-min and HBMCT is shown atthe bottom of
the figure (Min-min is on the left-hand side). Both heuristics produce a schedule
of an identical length (130 time units), although task assignments to machines are
different (and tasks are not necessarily assigned by HBMCT to the fastest machine
for the task).

Conversely, the example in Figure 2 considers a graph with anasymmetric struc-
ture (for example, each of nodes 6, 7, and 8, which are at the same layer, has a
different number of parents: 1, 2, 3, respectively). Also, the execution time of each
task on three different machines shows a higher degree of heterogeneity, while the
time needed to send data between different machines varies,with the link between
machines M0 and M2 being the slowest. In this case, the makespan of the sched-
ule produced by Min-min (left-hand side at the bottom of the figure) is 143.6 time
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Fig. 1 Scheduling a regular and symmetric graph using Min-min and HBMCT.

units, while the makespan of the schedule produced by HBMCT (right-hand side)
is 124.6, which is approximately 13% better than Min-min. This is because a global
approach, such as HBMCT, is capable of giving priority to tasks of those (critical)
paths in the graph that have a higher cost (such as the paths consisting of the tasks
0, 1, 7, and 9 and 0, 5, 8, and 9) as opposed to tasks of other paths.

The question that this paper is set to investigate is whethera typical scientific
workflow, such as Montage, would stand to benefit significantly from a global,
workflow-based approach for scheduling. The hypothesis is that the regular and
symmetric structure of the graph in workflows, such as Montage, is the key factor
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Fig. 2 Scheduling an asymmetric graph using Min-min and HBMCT.

that makes the performance of local approaches for scheduling equally competitive
to the performance of the more complex global strategies.

4 Experimental Evaluation

4.1 The Simulator and Settings

For the purposes of our evaluation we used a grid simulator built on the top of
the network simulator NS-2 [6], which was also used in earlier research [4]. We
only briefly describe the grid simulator here; more details can be found in [4]. The
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(b) 55-task tweaked Montage
(without the two middle jobs)

Fig. 3 Graphs of the workflows used in the experiments (based on Montage [10]).

simulator models resources, networks connecting different resources, jobs and files.
Each file is considered as a separate object. Each resource (i.e., a site) consists of
several hosts and each host can run jobs and store files. The simulator can be adapted
to include different scheduling algorithms to allocate jobs to sites; as part of this
work we adapted it to include HBMCT [20]. Thus, the simulatorincludes three
different approaches for scheduling: one local, task-based, Min-min, and two global,
workflow-based, from which one is based on a list scheduling principle, HBMCT,
whereas the other, WBA, is not.

The workflow application we considered is Montage [2, 10, 17]. The instance
of the workflow we used is shown in Figure 3(a). This contains 57 tasks (adding
the tasks of each level from the top the sum is 13+14+14+1+1+13+1). The original
version of Montage assumes that tasks at the same level have asimilar computation
cost. In some of the experiments we considered different types of variation in the
execution time of the tasks at each level. In addition, in order to experiment with
the structure of the graph, a variant of the Montage graph hasalso been used; this is
shown in Figure 3(b). The latter graph does not contain the middle two tasks of the
original graph, thus reducing the degree of synchronization needed and increasing
the relative importance of the independent (i.e., parallel) paths in the graph when it
comes to the overall makespan.
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QoI 57-task Montage 55-task tweaked Montage
(%) Min-min WBA HBMCT % Min-min WBA HBMCT %
0 7802.6 7785.4 7796.90.22 7302.1 7288.5 7234.90.92
50 9146.0 9060.4 9097.70.93 9750.3 9710.6 9688.00.64
100 9949.4 9878.8 9930.20.71 10293.4 9696.1 9627.76.47
200 12562.712436.412420.31.13 11949.011432.311370.54.84
300 12763.412531.312305.23.58 11273.310410.110392.17.82
400 13125.012710.712687.33.33 11287.010551.110523.86.76

Table 1 Overall execution time when tasks at each level have a similar (estimated) execution time.

In order to capture the degree of variation expected betweenthe estimated ex-
ecution time and the actual execution time of each task, we adopted the notion of
the Quality of Information(QoI) [8, 21]. This corresponds to an upper bound on
the percentage of error that the static estimate may have with respect to the actual
execution time. So, for example, a percentage error of 50% indicates that the actual
(run-time) execution time of a task will be within 50% (plus or minus) of the static
estimate for this task. This value is always positive. In ourexperiments, we consider
values for QoI of 0% (perfect estimates), 50%, 100%, 200%, 300%, and 400%.

4.2 Results and Discussion

The objective of our experiments has been to quantify and assess the difference in
the performance of the schedule produced by Min-min, HBMCT and WBA, and test
our hypothesis that the symmetric and regular structure of the graph does not have
much to gain from global scheduling strategies. To achieve our objective, we used:

I Five different values for QoI to check run-time deviations, which are up to four
times the estimated execution times of tasks.

II Two different graph structures, one corresponding to a 57-task instance of the
original Montage workflow, shown in Figure 3(a), and one corresponding to a
55-task tweaked version of Montage, shown in Figure 3(b), which reduces the
degree of synchronization by removing two tasks.

III Three different assumptions about theestimatedexecution time of tasks at each
level of the graph. These assumptions are: (a) tasks at each level have a similar
execution time; (b) all tasks except the rightmost task at each level have an
execution time which is twice the execution time of the rightmost task; and
(c) the leftmost task at each level has an execution time which is ten times the
execution time of the remaining tasks at the same level.

In the following, we group the results using the three different assumptions for the
execution time of the tasks at each level. We also note than, in all cases, the results
are averaged over 20 runs and there are always 6 machines available to schedule the
tasks of the workflow.
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QoI 57-task Montage 55-task tweaked Montage
(%) Min-min WBA HBMCT % Min-min WBA HBMCT %
0 14437.214109.414120.82.27 14667.214059.013527.3 7.77
50 16024.315327.115545.24.35 15994.015197.215068.9 5.78
100 18774.018258.018223.52.93 17466.215855.515356.112.08
200 33625.532485.032448.73.50 28843.627598.726832.8 6.97
300 39438.937937.138066.23.81 39151.837430.036557.0 6.63
400 51123.050701.050278.61.65 50706.649861.049211.3 2.95

Table 2 Overall execution time when all tasks at each level except the rightmost task have an
(estimated) execution time which is twice the (estimated) execution time of the rightmost task.

4.2.1 All tasks at each level have a similar (estimated) execution time

Table 1 shows the overall execution time (as provided by the simulator) of the two
different variants of Montage considered, when tasks at each level have a similar
execution time. The leftmost column shows the upper bound ofQuality of Informa-
tion (QoI) considered in each row. The next three columns show the execution time
for each scheduling algorithm used with the 57-task Montage. The fourth column
shows the percentage gain of the best global scheduling strategy (that is, the best of
WBA and HBMCT) as compared to the task-based Min-min (this value is computed
as 100× (1−min(mWBA,mHBMCT)/mMinMin)), wherem is the makespan of the cor-
responding strategy. From the results, it can be seen that inthe case of the 57-task
Montage, Min-min has a performance which is comparable to the performance of
the workflow-based heuristics. Thus, the gain of global, workflow-based heuristics
is less than 1% if the value of QoI is up to 100%, reaching a maximum of just 3.58%
in more extreme cases where the value of QoI is higher. The comparatively worse
performance of Min-min in the case of high variations in the actual execution time
(as opposed to the estimated execution time) may be due to itslower robustness
(comparing to HBMCT and WBA), a result also corroborated from [7]. The gain
is higher in the case of the tweaked 55-task Montage, due to the higher degree of
parallelism, which opens up more opportunities for different schedules. As an aside
remark, it is noted that, with the 57-task Montage, WBA has a slightly better per-
formance than HBMCT for small values of QoI, whereas HBMCT tends to perform
better as the value of QoI increases (a result also corroborated from [7]). The per-
formance of HBMCT is consistently better than WBA (althoughnot by much) in
the case of the 55-task tweaked Montage.

4.2.2 All tasks at each level, except the rightmost task, have an (estimated)
execution time which is twice the (estimated) execution time of the
rightmost task

Table 2 shows the overall execution time when there is some variation in the ex-
ecution time of the tasks at each level, in particular when the rightmost task has
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QoI 57-task Montage 55-task tweaked Montage
(%) Min-min WBA HBMCT % Min-min WBA HBMCT %
0 8213.0 8190.6 8204.70.27 7685.6 7674.8 7662.0 0.31
50 9297.3 9286.6 9276.30.23 9311.3 9199.4 9034.7 2.97
100 10105.210071.010151.00.34 10323.710002.8 9839.0 4.70
200 12946.512836.412633.92.41 14181.612684.312557.311.45
300 14277.814001.614247.01.93 13926.912578.512482.610.37
400 21896.421719.122035.10.81 23462.021214.321092.010.10

Table 3 Overall execution time when the leftmost task at each level has an (estimated) execution
time which is 10 times the (estimated) execution time of the other tasks at the same level.

an execution time which is half the execution time of the other tasks at the same
level. The impact of this variation is that it creates a particular shorter path as op-
posed to several longer paths in the graph. The Min-min heuristic still manages
to produce reasonably efficient schedules comparing to WBA and HBMCT. Even
though these schedules are not as efficient as before, their performance is still only
up to 4.35% worse than the performance of the more sophisticated, workflow-based
heuristics. We observe the same pattern of behaviour as before; the efficiency of
Min-min is worse in the case of the 55-task tweaked Montage. Furthermore, we
observe the same pattern of behaviour when we compare the performance of WBA
and HBMCT.

4.2.3 The leftmost task at each level has an (estimated) execution time, which
is 10 times the (estimated) execution time of the other tasksat the same
level

Table 3 shows the overall execution time of the workflows whenthe variation in
task execution time is due to an increase in the execution time of the leftmost task
at each level, which is 10 times the execution time of the other tasks at the same
level. The impact of this variation in execution time is thatit creates one relatively
long critical path in the graph. It can be seen that in the caseof the 57-task Montage
the performance of Min-min is clearly comparable to the performance of WBA and
HBMCT; it is at most 2.41% worse. In one case (for a value of QoIequal to 400),
Min-min even outperforms HBMCT. Same as before, the performance of Min-min
worsens in the case of the 55-task tweaked Montage. In fact, interestingly enough,
in this case, the deficiency of Min-min is worst comparing to the two previous sets
of results.

4.2.4 Summary

The results in Tables 1, 2, 3 support our view that in the case of the regular and
symmetric Montage application, a local strategy, such as Min-min, does not appear
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to be inferior to sophisticated global strategies, both when there are large run-time
deviations from the actual estimated execution times (i.e., large values of QoI) and
when there are differences in the estimated execution time between tasks at each
level (as it is the case in Tables 2 and 3). As already hypothesized, this property
appears to be a consequence of the structure of the graph. This is supported by our
experiments with the tweaked Montage, where Min-min clearly lags behind as a
result of its inability to handle efficiently the critical paths. Finally, it is interesting
to observe that the introduction of uncertainty in the execution time (which may
also cause individual tasks to run faster) on average increases the overall execution
time of the workflow by up to more than three times with respectto the statically
estimated execution time. This observation suggests that,regardless of the quality
of the scheduling heuristic that is used to find an initial mapping for tasks of a DAG,
there may be, comparatively, much more to be gained in performance by run-time
rescheduling, a finding also supported by the experiments in[14].

5 Conclusion

This paper has compared the performance of the schedule produced by three dif-
ferent approaches for scheduling workflows on the Grid. It has been found that
scheduling a workflow, such as (a 57-task) Montage, using a simple heuristic that
makes only local decisions, Min-min, results in performance which is comparable
to the performance obtained with more sophisticated, workflow-based scheduling
heuristics such as WBA or HBMCT. The performance of Min-min worsens slightly,
but not significantly, when high variations between the estimated and the actual
execution time of the tasks of the workflow exist. Min-min also exhibits good per-
formance if the workflow consists of a single critical path with significantly longer
execution time. The performance of Min-min drops when thereis a single path of
shorter length and multiple critical paths in the workflow (cf. Table 2). Its perfor-
mance worsens even further in the case of a workflow with multiple long parallel
paths (cf. the results with the 55-task tweaked Montage). Itis noted that this may not
be a common case in practice, since, as already mentioned, the structure of several
commonly cited workflows consists of alternating fan-out and fan-in phases.

In summary, the results are encouraging in that they suggestthat Min-min may be
sufficiently efficient in the context of scheduling certain classes of scientific work-
flows on the Grid even when there are uncertainties in the estimated task execution
times. It is noted that the small performance deficits of Min-min can be offset by
its inherent simplicity and the ease with which it can be adopted to perform adap-
tive rescheduling at run-time, options that have been shownto be relatively more
important when addressing run-time changes [14, 21]. Future work can expand the
preliminary experimental study of this paper. Also, it can try to find out under what
circumstances the relative importance of run-time changesdominates the choice of
an appropriate heuristic for the initial mapping onto the resources.
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