Mapping Workflows on Grid Resources:
Experiments with the Montage Workflow

Rizos Sakellariou and Henan Zhao and Ewa Deelman

Abstract Scientific workflows have received considerable attentio@rid comput-
ing. This paper is concerned with the issue of schedulingrgific workflows and,
by considering a commonly used astronomy workflow, Montégegstigates the
impact of different strategies to schedule the workflow grapur experiments sug-
gest that the rather regular and symmetric nature of the Bgmgjraph allows rather
simple to implement scheduling heuristics that do not talte account the whole
structure of the graph, such as Min-min, to deliver competiperformance in most
cases of interest. The results support the view that sapéiist graph scheduling
heuristics may not be always a prerequisite for good perémee in workflow exe-
cution. Instead, mechanisms to deal with uncertainties@tetion time may be of
comparatively higher importance.
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1 Introduction

A number of scientific applications consist of individualarsdalone application
components, each often independently designed and dedkleyhich are then
combined in pre-defined ways to perform large-scale sdiergnalysis. In recent
years scientific workflow$9, 22] have been used to refer to the process of bringing
the individual components together and specifying thearimctions in a systematic
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way. Once a scientific workflow (or simply workflow) has beesembled, a key
problem that needs to be addressed relatesappingthe components of the work-
flow onto distributed resources, that is, what node of thplgia going to execute on
what resource. This problem needs to take into account aitcaints (for instance,
some components may have to execute on specific nodes) aasmelloptimize
for various objectives such as the overall completion tirfine workflow, resource
usage, (monetary) cost of using the resources, etc.

Since most known types of workflows appear to be typicallyespnted by a Di-
rected Acyclic Graph (DAG), there has been a considerabtaiatof work trying to
solve this workflow mapping problem using DAG schedulingtietics [4, 25, 27].
Such heuristics generally aim at minimizing the cost of lingrthe critical path
of the graph. However, it has been argued [12] that such $i@sj although worth-
while, might not be substantially more efficientin the pautar context of workflow
scheduling on the grid; their benefits might be outweighethieyr additional com-
plexity. This argument can be reinforced by the easy to makewation that DAGs
representing many real-world workflow applications seerhaee a somewhat reg-
ular and symmetric structure. As a consequence, simpledsting approaches,
which do not consider the whole structure of the DAG at oncighinbe a good
alternative for workflow scheduling. Following the broad@ssification in [4, 26],
we term the latter approacheslasal (or task-based), since their decision making
strategy relies on locally optimal choices, as opposegldbal (or workflow-based
according to [4]) strategies that consider the whole stmgcdf the graph.

To the best of our knowledge, there has been only limited viyikg to evalu-
ate and quantify the advantages and disadvantages of togi@gies versus global
strategies when mapping workflows on the grid. In [4], it hastbfound that the dif-
ference in the makespan between a global and a local straségy the well-known
Montage workflow [2, 17] was less than 0.3%. However, theedéhce would in-
crease to more than 100% for data-intensive workflows, wtrere&eommunication
cost would dominate computation (see Table 1 in [4]). In @8t the experimental
study in [12] has indicated that a simple local strategy dan aope with data-
intensive cases and high communication to computation hostever, the authors
of this study notice limitations for the local strategy iretbhase of sparse DAGS,
which are due to the small degree of parallelism or the smatiimer of dependen-
cies amongst the tasks.

In this paper, we contribute to the quantitative evaluatibthe advantages and
disadvantages of local versus global strategies by conisgl¢he impact ofun-
certainty in workflow mapping, using, in our study, a workflow that implents
a widely mentioned astronomy application to build mosai€she sky, Mon-
tage [2, 17]. Since the initial mapping decisions for the kflorv are made on the
basis of static estimates, a key factor in the evaluatiomefierformance of local
vs global strategies is how well the initial mapping ontoowges performs when
there are deviations from the estimated execution time cffi éask! The ability of

1 Such deviations, from the initially estimated executiondj may be due to any reason: wrong
prediction, resource load, etc. In principle, these dawist can be corrected at run-time using, for
example, rescheduling [21] or adaptive [14] techniquesvéier, there is also a need to minimize
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a scheduling algorithm to produce a schedule that is affeatelittle as possible
by run-time changes is known asbustnessind, for limited degrees of uncertainty,
has been studied elsewhere [7]. In this paper, we use lagreeke of uncertainty,
which include actual execution times that may be up to 4 tihigker than initially
estimated (these times can also be shorter than the essim@te simulation results
validate our hypothesis: when using Montage, variatiorigzéen local and global
workflow mapping strategies are insignificant (at most al8obf) and appear to be
consistent regardless of the degree of uncertainty withe@go the initial execution
times estimates. Instead, by using a tweaked version of thetdge DAG, with a
smaller number of edges, and longer parallel paths in thetgtae variation in ex-
ecution time between local and global workflow mapping styets becomes more
profound, up to about 12%. This indicates some correlatich® performance of
these mapping strategies strategies with the type of the hgare applied to.

The remainder of the paper is structured as follows. SeQiqmovides some
background on the problem of DAG/workflow scheduling an@veht heuristics.
Section 3 gives a motivating example that highlights thesfibs differences in per-
formance that some heuristics may exhibit depending ontthetsre of the graph
considered. Section 4 is trying to assess the possiblaeiftes in performance be-
tween a local, task-based, approach and a global, workfesed), approach when
scheduling Montage [10], a commonly cited application usexstronomy to create
a large mosaic image of the sky from many smaller astrondritages. Finally,
Section 5 concludes the paper.

2 Background

The model used for the representation of a workflow is a Da@dcyclic Graph
(DAG), where nodes (or tasks) represent computation andsetkpresent data or
control flow dependences between nodes. A set of machinesisred to be al-
ready available and known. These machines and the netwidd& between them
are heterogeneous: tasks may need a different amount oftdiragecute on each
machine and the transmission of data between different imesls not the same. A
machine can execute only one task at a time, and a task caartaeecution until
all data from its parent nodes is available. The schedulioglpm is to assign the
tasks onto machines so that precedence constraints aexted@mnd the makespan
is minimized.

In order to be able to make sensible scheduling decisions,assumed that
information about the estimated execution time of each taslkeach machine is
available. In addition, it is assumed that there are esémabout the speed of the
links connecting the machines available. This informatiged in conjunction with
the amount of data that may need to be transferred beforé at@ss its execution,

the overhead associated with rescheduling and/or adgpéiad keep the number of times when
such an action occurs small. Our work focuses on how thalnitbrkflow mapping decisions can
help in this respect.
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can provide an estimate about the earliest possible statdf a task whose parents
have finished their execution.

The problem of scheduling DAGs onto parallel resources isstiedied in the lit-
erature [13]. In recent years, partly as a result of the errarg of Grid systems and
applications such as workflows, additional research hassked on DAG scheduling
algorithms for heterogeneous systems [20, 23, 27], as weheir performance in
the context of the uncertainties typically associated withactual execution time of
tasks [7, 11, 15, 21]. A growing amount of work has also evad®AG scheduling
algorithms in the context of specific workflow applicatiods 16, 24].

As already mentioned, it is common to classify DAG schedpdfgorithms ac-
cording to whether scheduling decisions are mixally, with reference to just
a task or a set of tasks, globally, with reference to the whole DAG (work-
flow) [4, 26]. A commonly used heuristic in the former clasasi-based) idlin-
min, originally developed in the context of scheduling indegemt tasks [5]. This
can also be applied in the context of scheduling DAGSs, siatany point in time,
the tasks that are considered to be eligible for schedutiegay definition, indepen-
dent. This is because the eligible tasks are tasks whosésdatailable, hence, their
parents have finished execution. The key idea of Min-min fggh for each eligible
task, the machine that gives the earliest completion timéhie task. Then, the task
with the minimum earliest completion time is chosen for silimg. The process is
then repeated with the remaining task as well as any new taskdecome eligi-
ble (as a result of the completion of their parents). As reatim [4], “the intuition
behind this heuristic is that the makespan increases tis¢ &@ach iterative step,
hopefully resulting in a small makespan for the whole wonkflo

A commonly cited global heuristic in the context of DAG schiag for hetero-
geneous systems is HEFT [23]. HEFT first orders tasks by misgj@ value to each
task. This value roughly corresponds to the cost to reaclexiitenode from this
task. Then, tasks are scheduled using this order to the madhat gives the earli-
est completion time. The key idea (of thist schedulingbased heuristic [18]) is to
give higher priority to tasks on the critical path. Severaiiations to assign weights
and prioritize the tasks have been studied in [28]. Foll@gxbservations about the
impact of such variations, HBMCT [20] tries to improve thefpemance of HEFT
by relaxing the requirement to schedule tasks in a strictioofl their ranking, con-
sidering groups of independent tasks. Among the globalistis, it is also worth
mentioning the workflow-based allocation algorithm (WBAJ,[which compares
several alternative workflow schedules before the finaldaleeis chosen, based on
a generalized greedy randomized adaptive search procedure

Typically, heuristics that make decisions locally (tasiséd) are simpler and
faster, whereas heuristics that make decisions globaitij, ieference to the whole
workflow (workflow-based), have the potential to produceartdr makespan at the
expense of increased complexity. Such a potentially shargkespan is a conse-
quence of their ability to consider the whole graph at onad dence, give appro-
priate priority in execution to tasks in the critical pathhérhypothesis considered in
this paper, however, is that the regular and symmetric sirawf scientific work-
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flows does not stand to benefit from global heuristics. Tcsiliate the impact that
the structure of the graph may have, we present two examptbg inext section.

3 A Motivating Example

The simplicity of local, task-based approaches as oppasttetshorter makespan
expected to be produced by a global, workflow-based applisdlat key trade-off to
assess when selecting the heuristic that would be morébsittaschedule a certain
application. In the context of arbitrary DAGs, global hetids, which are capable
of tracking the critical path, are expected to give bettefgrenance. However, it is
guestionable whether the examples of scientific workflowséist can be regarded
asarbitrary DAGs. Instead, all the evidence available seems to suggaistrtany
scientific workflows have a regular and rather symmetriccitme. Many appear
to consist of sequences of fan-out (where the output of aitagkput to several
children) and fan-in (where the output of several tasks gregated by a child).
Typically, the outcome of fan-out procedures is identieaks that simply operate
on different data (indicating the exploitation of data pletesm). For examples, we
refer to workflows such as Montage (see Figure 9 in [10]), Gitan{see Figures 6
and 7 in [1]), LIGO (see Figure 4 in [19]), WIENZ2k (see Figurag24]), Invmod
(see Figure 7 in [24]) and AIRSN (see Figure 5 in [29]) as wslklze workflows
studied in [3].

In order to illustrate the possible differences in the sciedesulting from a lo-
cal heuristic, Min-min, and a global heuristic, HBMCT, analahthey are affected
by the structure of the graph, consider the examples in Eglirand 2. The graph
in Figure 1 has a rather regular, symmetric structure. Wy Wi@s regular because
it consists of a sequence of fan-out and fan-in (repeateckivénd symmetric be-
cause the independent subgraphs created during the faremgtdure are identical
(in terms of their structure). In addition, the executioméi of the tasks on three
different machines, M0, M1, M2, is similar, although not alyg identical (see the
table at the top right of the figure), while the cost of sendilaga from one task
to another (when these tasks are executed on different meghis set to 8 time
units. The schedule produced by Min-min and HBMCT is showthatbottom of
the figure (Min-min is on the left-hand side). Both heuristiroduce a schedule
of an identical length (130 time units), although task assignts to machines are
different (and tasks are not necessarily assigned by HBMGMé fastest machine
for the task).

Conversely, the example in Figure 2 considers a graph witiisgmmetric struc-
ture (for example, each of nodes 6, 7, and 8, which are at thee dayer, has a
different number of parents: 1, 2, 3, respectively). Al$® execution time of each
task on three different machines shows a higher degree efdgeneity, while the
time needed to send data between different machines vaiitbsthe link between
machines MO and M2 being the slowest. In this case, the makespthe sched-
ule produced by Min-min (left-hand side at the bottom of tlyeife) is 143.6 time
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Fig. 1 Scheduling a regular and symmetric graph using Min-min aByET.

units, while the makespan of the schedule produced by HBMigihtthand side)
is 124.6, which is approximately 13% better than Min-minisTik because a global
approach, such as HBMCT, is capable of giving priority tdksasf those (critical)
paths in the graph that have a higher cost (such as the patBisting of the tasks
0,1,7,and9and 0, 5, 8, and 9) as opposed to tasks of othex. path

The question that this paper is set to investigate is whethgpical scientific
workflow, such as Montage, would stand to benefit signifigafittm a global,
workflow-based approach for scheduling. The hypothesitas the regular and
symmetric structure of the graph in workflows, such as Moetég the key factor
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Fig. 2 Scheduling an asymmetric graph using Min-min and HBMCT.

that makes the performance of local approaches for schegletjually competitive
to the performance of the more complex global strategies.

4 Experimental Evaluation

4.1 The Simulator and Settings

For the purposes of our evaluation we used a grid simulatdt bo the top of
the network simulator NS-2 [6], which was also used in earésearch [4]. We
only briefly describe the grid simulator here; more detaila be found in [4]. The
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(b) 55-task tweaked Montage
(without the two middle jobs)

(a) 57-task Montage workflow

Fig. 3 Graphs of the workflows used in the experiments (based on &gentL0]).

simulator models resources, networks connecting diffieresources, jobs and files.
Each file is considered as a separate object. Each resowgcea(site) consists of
several hosts and each host can run jobs and store files.mh&asdr can be adapted
to include different scheduling algorithms to allocategdb sites; as part of this
work we adapted it to include HBMCT [20]. Thus, the simulaitocludes three
differentapproaches for scheduling: one local, task-thagn-min, and two global,
workflow-based, from which one is based on a list schedulimnciple, HBMCT,
whereas the other, WBA, is not.

The workflow application we considered is Montage [2, 10,. THe instance
of the workflow we used is shown in Figure 3(a). This contaifgdsks (adding
the tasks of each level from the top the sum is 13+14+14+13%%)L The original
version of Montage assumes that tasks at the same level lsawdla computation
cost. In some of the experiments we considered differerasygf variation in the
execution time of the tasks at each level. In addition, ireotd experiment with
the structure of the graph, a variant of the Montage graptalsasbeen used; this is
shown in Figure 3(b). The latter graph does not contain tradiaitwo tasks of the
original graph, thus reducing the degree of synchroninatieeded and increasing
the relative importance of the independent (i.e., pafgtlaths in the graph when it
comes to the overall makespan.
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Qol 57-task Montage 55-task tweaked Montage
(%)||Min-mil WBA|HBMCT| % |[Min-minl WBA[HBMCT %
0 || 7802.4 7785.4 7796.90.22( 7302.1 7288.3 7234.90.92
50| 9146.0 9060.4 9097.70.93| 9750.3 9710.6 9688.00.64
100|[ 9949.4 9878.8 9930.20.71{|10293.4 9696.1 9627.716.47
200(|12562.112436.412420.31.13(11949.911432.311370.54.84
300||12763.412531.312305.23.58(11273.310410.110392.17.82,
400/|13125.012710.712687.33.33(11287.010551.110523.86.76

Table 1 Overall execution time when tasks at each level have a sife&imated) execution time.

In order to capture the degree of variation expected betwleerstimated ex-
ecution time and the actual execution time of each task, wetad the notion of
the Quality of Information(Qol) [8, 21]. This corresponds to an upper bound on
the percentage of error that the static estimate may haveregipect to the actual
execution time. So, for example, a percentage error of 5@#tates that the actual
(run-time) execution time of a task will be within 50% (plusminus) of the static
estimate for this task. This value is always positive. Inexperiments, we consider
values for Qol of 0% (perfect estimates), 50%, 100%, 2009%0%30and 400%.

4.2 Results and Discussion

The objective of our experiments has been to quantify anelsashe difference in
the performance of the schedule produced by Min-min, HBM@d WBA, and test
our hypothesis that the symmetric and regular structur@@igraph does not have
much to gain from global scheduling strategies. To achiewveobjective, we used:

| Five different values for Qol to check run-time deviationdich are up to four
times the estimated execution times of tasks.

Il Two different graph structures, one corresponding to gd&sk instance of the
original Montage workflow, shown in Figure 3(a), and one esponding to a
55-task tweaked version of Montage, shown in Figure 3(b)clvheduces the
degree of synchronization by removing two tasks.

Il Three different assumptions about testimatedexecution time of tasks at each
level of the graph. These assumptions are: (a) tasks at eaelhlave a similar
execution time; (b) all tasks except the rightmost task ahdavel have an
execution time which is twice the execution time of the rigbst task; and
(c) the leftmost task at each level has an execution timelwikiten times the
execution time of the remaining tasks at the same level.

In the following, we group the results using the three défgrassumptions for the
execution time of the tasks at each level. We also note thaal| cases, the results
are averaged over 20 runs and there are always 6 machinésdead schedule the
tasks of the workflow.
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Qol 57-task Montage 55-task tweaked Montage
(%)|[Min-minl - WBA|HBMCT| % ||Min-minl  WBA|HBMCT| %

0 ||14437.214109.414120.82.27/{14667.214059.013527.3 7.77
50 |(16024.315327.115545.24.35|15994.015197.215068.9 5.78
100]|18774.018258.018223.52.93|17466.215855.515356.112.0
200(|33625.532485.032448.73.50(28843.627598.126832.8 6.97
300|39438.937937.138066.23.81/(39151.837430.036557.0 6.63
400]|51123.050701.050278.61.65(50706.649861.049211.3 2.95

Table 2 Overall execution time when all tasks at each level exceptriffhtmost task have an
(estimated) execution time which is twice the (estimatedyation time of the rightmost task.

4.2.1 Alltasks at each level have a similar (estimated) exaiton time

Table 1 shows the overall execution time (as provided by ithelgtor) of the two
different variants of Montage considered, when tasks ah éacel| have a similar
execution time. The leftmost column shows the upper bour@@uality of Informa-
tion (Qol) considered in each row. The next three columnsvshe execution time
for each scheduling algorithm used with the 57-task Montdge fourth column
shows the percentage gain of the best global schedulinggyréhat is, the best of
WBA and HBMCT) as compared to the task-based Min-min (thisesés computed
as 100x (1 — min(myga MyBsmcT)/Mminvin)), Wheremis the makespan of the cor-
responding strategy. From the results, it can be seen thhtinase of the 57-task
Montage, Min-min has a performance which is comparable ¢opttrformance of
the workflow-based heuristics. Thus, the gain of global,kftow-based heuristics
is less than 1% if the value of Qol is up to 100%, reaching a mari of just 3.58%
in more extreme cases where the value of Qol is higher. Thepacatively worse
performance of Min-min in the case of high variations in tlctual execution time
(as opposed to the estimated execution time) may be due kowtsr robustness
(comparing to HBMCT and WBA), a result also corroboratedrirfy]. The gain
is higher in the case of the tweaked 55-task Montage, dueetditiher degree of
parallelism, which opens up more opportunities for différechedules. As an aside
remark, it is noted that, with the 57-task Montage, WBA hatightly better per-
formance than HBMCT for small values of Qol, whereas HBMCidto perform
better as the value of Qol increases (a result also corrtdebfeom [7]). The per-
formance of HBMCT is consistently better than WBA (althougdt by much) in
the case of the 55-task tweaked Montage.

4.2.2 Alltasks at each level, except the rightmost task, havan (estimated)
execution time which is twice the (estimated) execution timof the
rightmost task

Table 2 shows the overall execution time when there is somatian in the ex-
ecution time of the tasks at each level, in particular whaenrtghtmost task has
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Qol 57-task Montage 55-task tweaked Montage
(%)|[Min-minl - WBA|HBMCT| % ||Min-minl  WBA|HBMCT| %
0 || 8213.0 8190.6 8204.10.27| 7685.6 7674.4 7662.0 0.31
50| 9297.3 9286.6 9276.30.23| 9311.3 9199.4 9034.7 2.97
100({10105.210071.010151.00.34/|10323.710002.8 9839.Q 4.70
200[|12946.512836.412633.92.41/(14181.612684.312557.311.45
300[|14277.814001.614247.01.93(13926.912578.512482.610.37
400]|21896.421719.122035.10.81)[23462.021214.321092.010.10

Table 3 Overall execution time when the leftmost task at each lessldn (estimated) execution
time which is 10 times the (estimated) execution time of theotasks at the same level.

an execution time which is half the execution time of the othsks at the same
level. The impact of this variation is that it creates a aitr shorter path as op-
posed to several longer paths in the graph. The Min-min kgarstill manages
to produce reasonably efficient schedules comparing to WBAHBMCT. Even
though these schedules are not as efficient as before, gvéarmance is still only
up to 4.35% worse than the performance of the more sophiisticavorkflow-based
heuristics. We observe the same pattern of behaviour ageyefe efficiency of
Min-min is worse in the case of the 55-task tweaked MontagethErmore, we
observe the same pattern of behaviour when we compare tf@mpance of WBA
and HBMCT.

4.2.3 The leftmost task at each level has an (estimated) exgion time, which
is 10 times the (estimated) execution time of the other tasks the same
level

Table 3 shows the overall execution time of the workflows wttenvariation in
task execution time is due to an increase in the executiom tifthe leftmost task
at each level, which is 10 times the execution time of the rothsks at the same
level. The impact of this variation in execution time is titatreates one relatively
long critical path in the graph. It can be seen that in the oa#iee 57-task Montage
the performance of Min-min is clearly comparable to the parfance of WBA and
HBMCT; it is at most 2.41% worse. In one case (for a value of €mlal to 400),
Min-min even outperforms HBMCT. Same as before, the peréoroe of Min-min
worsens in the case of the 55-task tweaked Montage. In faetgstingly enough,
in this case, the deficiency of Min-min is worst comparingte two previous sets
of results.

4.2.4 Summary

The results in Tables 1, 2, 3 support our view that in the cdsbeoregular and
symmetric Montage application, a local strategy, such asiMin, does not appear
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to be inferior to sophisticated global strategies, both mtieere are large run-time
deviations from the actual estimated execution times, (agge values of Qol) and
when there are differences in the estimated execution tieteden tasks at each
level (as it is the case in Tables 2 and 3). As already hyp@beésthis property
appears to be a consequence of the structure of the graghist$upported by our
experiments with the tweaked Montage, where Min-min cletas behind as a
result of its inability to handle efficiently the critical fhes. Finally, it is interesting
to observe that the introduction of uncertainty in the etiecutime (which may
also cause individual tasks to run faster) on average isesethe overall execution
time of the workflow by up to more than three times with respedhe statically
estimated execution time. This observation suggests ribgadrdless of the quality
of the scheduling heuristic that is used to find an initial piag for tasks of a DAG,
there may be, comparatively, much more to be gained in padace by run-time
rescheduling, a finding also supported by the experimerjtsiij

5 Conclusion

This paper has compared the performance of the scheduleigeddy three dif-

ferent approaches for scheduling workflows on the Grid. & baen found that
scheduling a workflow, such as (a 57-task) Montage, usingnalsi heuristic that

makes only local decisions, Min-min, results in performamdich is comparable
to the performance obtained with more sophisticated, workthased scheduling
heuristics such as WBA or HBMCT. The performance of Min-miorsens slightly,

but not significantly, when high variations between thermeated and the actual
execution time of the tasks of the workflow exist. Min-minaaéxhibits good per-

formance if the workflow consists of a single critical pathitwsignificantly longer

execution time. The performance of Min-min drops when thera single path of

shorter length and multiple critical paths in the workflow. (Eable 2). Its perfor-

mance worsens even further in the case of a workflow with ipleltiong parallel

paths (cf. the results with the 55-task tweaked Montage nibted that this may not
be a common case in practice, since, as already mentioredirticture of several
commonly cited workflows consists of alternating fan-oud é&m-in phases.

In summary, the results are encouraging in that they sugigastlin-min may be
sufficiently efficient in the context of scheduling certalasses of scientific work-
flows on the Grid even when there are uncertainties in thenastid task execution
times. It is noted that the small performance deficits of Miim can be offset by
its inherent simplicity and the ease with which it can be dddpo perform adap-
tive rescheduling at run-time, options that have been shiowbe relatively more
important when addressing run-time changes [14, 21]. Euttork can expand the
preliminary experimental study of this paper. Also, it cantb find out under what
circumstances the relative importance of run-time changesinates the choice of
an appropriate heuristic for the initial mapping onto theongrces.
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