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Abstract

Large-scale applications can be expressed as a set of tasks with data dependencies between them, also known as

application workflows. Due to the scale and data processing requirements of these applications, they require Grid

computing and storage resources. So far, the focus has been on developing easy to use interfaces for composing

these workflows and finding an optimal mapping of tasks in the workflow to the Grid resources in order to

minimize the completion time of the application. After this mapping is done, a workflow execution engine is

required to run the workflow over the mapped resources. In this paper, we show that the performance of the

workflow execution engine in executing the workflow can also be a critical factor in determining the workflow

completion time. Using Condor as the workflow execution engine, we examine the various factors that affect the

completion time of a fine granularity astronomy workflow. We show that changing the system parameters that

influence these factors and restructuring the workflow can drastically reduce the completion time of this class of

workflows. We also examine the effect on the optimizations developed for the astronomy application on a

coarser granularity biology application. We were able to reduce the completion time of the Montage and the

Tomography application workflows by 90% and 50%, respectively.

1. Introduction

Large-scale applications are being built by scientific

collaborations in physics [1], astronomy [2, 3],

biology [4], earthquake science [5] etc. These

applications are often structured as workflows that

express an application by specifying a set of

interdependent tasks. Due to factors such as the

location of or the need for large amounts of com-

puting or storage resources, it is often not possible to

execute all of the steps in a workflow on a single

computer. The resources available to the scientists

are often geographically distributed and belong to

different administrative domains. The resources are

typically shared among users as part of a Grid

infrastructure. Hence, it is often desirable to view

the Grid as the target execution environment for

application workflows. An application workflow is a

set of tasks with data dependencies between them. It

can be represented as a directed acyclic graph (DAG)

where the vertices are the compute tasks and the

edges are the data dependencies between the tasks.

The input data required by a task should be available

before the task begins execution and the output data

produced can be transferred to its child tasks only

when the task has completed execution. This is in

contrast to the data pipeline model where data is

streamed between the tasks [6]. In this paper, we

focus on large-scale workflows containing thousands

of tasks.j Corresponding author.
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Much work has focused on developing heuristics

for mapping the application tasks to appropriate

resources based on performance models in order to

minimize the application makespan [7Y9]. The

makespan of the workflow is defined as the time

interval between the start time of the first task and

the completion time of the last task in the workflow.

The makespan is theoretical in nature and does not

include the overhead of executing the application

across the mapped Grid resources. The overhead is

incurred since the workflow execution engine has to

parse the workflow description, identify resources for

the tasks, submit tasks to these resources, monitor

their execution and analyze the dependencies in the

workflow. The execution overhead can be non-

negligible due to the distributed nature of the

resources, the large number of tasks in the workflow

(in thousands) and the complex dependencies be-

tween the tasks. The overhead which can be an order

of magnitude more than the theoretical makespan,

(for large scale, fine computational granularity work-

flows) can have a significant impact on the overall

workflow execution. In this paper, we show that the

behavior of the workflow execution engine in

executing the workflow can be crucial in determining

the actual application makespan. An important

distinction is that the experiments in this paper were

done using dedicated resources and hence we do not

include the wait time associated with provisioning

the resources in the execution overhead. This wait

time can be arbitrary depending on the workload of

the resources and its optimization is a separate

problem outside the scope of this paper.

We examined the behavior of a commonly used

grid-based workflow execution engine, Condor [10,

11]. We conducted our studies with an astronomy

application called Montage [2] and a biology

application called Tomography [4]. Montage is a

small computational granularity application and for

the particular workflow used in this paper, the

average runtime of the tasks is 3.3 s on a 1.3 GHz

Intel Itanium 2 processor machine with 4,469 tasks in

the workflow. Tomography is a coarser granularity

application than Montage and the average runtime is

2 min on similar processors with 2,946 tasks in the

workflow. Table 1 shows the difference between the

theoretical (assuming no overhead) and the actual

makespan of these workflows (found by actually

executing the workflow) when using 100 dedicated

processors with the default behavior of the workflow

execution engine.

The actual makespan is 60 times more than the

theoretical one for Montage and is more than twice

the theoretical one for the Tomography workflow.

Thus depending on the computational granularity and

the scale of the workflow, the execution overhead

can be a significant part of the actual makespan even

with dedicated resources. Apart from the average

runtimes and number of tasks, the workflows used in

this work differ in the fact that the Montage work-

flow has dependencies between the tasks in the

workflow whereas the Tomography workflow is a

set of independent tasks. We use the Montage work-

flow for developing a set of optimizations and study

how these optimizations perform for a coarse gran-

ularity application such as Tomography. Using these

optimizations, we were able to reduce the actual

makespan by 90% and 50% in case of the Montage

and Tomography workflows, respectively.

The paper is structured as follows: Section 2

describes the workflow execution model that identi-

fies the major costs involved in executing the work-

flow. Section 3 describes the approach, the execution

engine and the Montage workflow. Experimental

results with the Montage workflow and basic

optimizations based on reconfiguring the execution

engine are presented in Section 4. Section 5 describes

some further optimization methods based on work-

flow restructuring and distributed workflow execu-

tion. Experimental results with the Tomography

application are presented in Section 6. Section 7

discusses the results obtained in the paper and their

generalization. Related work is presented in Section

8 followed by conclusions.

2. Workflow Execution Model

The workflow is expressed as a set of tasks with

dependencies between them. A task becomes execut-

able when its dependencies are met and may be

Table 1. Difference between theoretical and actual runtimes of

Montage and Tomography workflows.

Theoretical Actual

Montage G5 min 303 min

Tomography 60 min 135 min
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scheduled by submitting it to a resource for execu-

tion. Figure 1 shows the major functions that a

workflow execution engine must perform to execute

a workflow. Prior to workflow execution, a high

level mapper is used to map the workflow tasks to

Grid resources based on some performance model

and create a workflow description where each task is

annotated with its target resource. Before starting the

workflow execution, the engine parses the workflow

description and creates a ready list for holding the

executable tasks.

Once the execution has started, there are three

main tasks associated with the actual execution of a

workflow:

� Updating the ready list (steps 3,4,5 in Figure 1.)

The ready list is the list of executable tasks.

Updating the ready list involves maintaining a

status of all the tasks in the workflow, monitoring

task completions, determining when tasks have

become eligible for execution based on the task

completion events and the dependencies in the

workflow and adding them to the ready list.

Initially, when the workflow starts execution, this

list will contain tasks that have no predecessors.

� Resource matching (steps 6,7 in Figure 1.) This

involves identifying the resources for a subset of

tasks in the ready list. The subset may include

any combination of tasks in the list. The resource

matching may be done every time a task is added

to the ready list or periodically. Note that a high

level mapper has already mapped the workflow

tasks to Grid resources. In case the mapped

resource is a single host, the resource identifica-

tion part is trivial. However, when the mapped

resource is a cluster, the resource identification

step is responsible for low-level mapping and

tries to find an available host from that cluster for

running the task.

� Task submission (step 8 in Figure 1.). This

involves contacting the identified host for the

task, sending the task description to it, transfer-

ring the input files, and starting a process which

monitors the progress of the submitted task on the

resource. This might also involve authorization

and authentication with the host.

Due to the large number of tasks (in thousands)

and dependencies in the workflow and the nature of

the execution resources (shared or dedicated, remote

or local), there is a cost associated with each of the

above operations. The experiments in this paper

explore how the efficiency of the workflow execu-

tion engine in performing these operations can affect

the makespan of large scale, fine granularity work-

flows. In the rest of this paper, the term job and task

would be used interchangeably to refer to a compute

node in the workflow graph.

3. Approach and Experimental Setup

In order to understand the costs associated with the

significant operations in workflow execution, we

performed a series of experiments in which a large-

scale scientific workflow with thousands of tasks was

executed using a commonly used workflow engine

on an operational Grid infrastructure. In this section,

we describe the workflow execution engine and the

application workflow used for these experiments.

3.1. Condor as the Workflow Execution Engine

We use Condor [12] as the workflow execution

engine (ver 6.7.1). Condor was originally designed as

a high-throughput resource management system and

was initially used for opportunistically scheduling

jobs on a set of distributively owned machines
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Figure 1. The workflow execution model.
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known as the Condor pool. Note that the application

workflow could be mapped to any Grid resource that

need not be managed by the Condor resource

management system. The only requirement is that

the Grid resources must use the Globus GRAM

service [13]. For our experiments, initially the

Condor pool consists of couple of machines (local

to the user), one of them acts as the central manager

of the pool and the other would be used for workflow

submission purposes (submit host). Then, a Condor

function called a glide-in [14] is used to extend the

pool with the remote Grid resources using GRAM for

certain duration. During this duration, these resources

appear to be dedicated nodes in the Condor pool and

can be used for task execution using the Condor

services.

Condor can be thought of as consisting of two

major components: a task sequencing engine called

DAGMan [11] and a task scheduler (schedd). DAG-

Man submits ready jobs to the scheduler by moni-

toring the status of currently executing jobs and

analyzing the dependencies in the workflow. The

scheduler maintains a job queue and schedules jobs

onto resources in the pool by consulting a negotiator

running on a central manager (the resource manager

of the pool). It then passes the job to an execution

service called startd. The job status is recorded in a

log file that is parsed by DAGMan to update

dependency information. The components of Condor

and their relationship are summarized in Figure 2.

DAGMan and the task scheduler (schedd) need to be

collocated on the same machine which is known as

the submit host. As mentioned earlier, our Condor

pool consists of two local machines, one of them acts

as the submit host and the other as the central

manager of the pool. All the machines used for task

execution, also known as worker nodes are remote

Grid resources, drafted in temporarily into the

Condor pool using glide-in [14]. A worker node can

possibly run multiple tasks concurrently by hosting

multiple startd execution services. However, for the

experiments described in this paper, a worker node
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Figure 2. Workflow execution in Condor.
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only hosts one startd service and executes one task at

a time.

Earlier we discussed the costs associated with

workflow execution in abstract terms. In the context

of the Condor resource management system these

costs (along with the responsible entities) would

translate into the following.

1. Updating the ready list is equivalent to submitting

jobs into the job queue on the submit host

(DAGMan, scheduler).

2. Resource matching is equivalent to scheduling

jobs to available machines in the pool. (scheduler,

negotiator)

3. Submitting the tasks for execution is equivalent to

dispatching them to the matched machines for

execution (scheduler, startd).

In Section 4 we explore how the job submission

rate, the scheduling interval and the dispatch rate

affect the makespan of the workflow.

3.2. Montage Workflow

Montage is a data-intensive astronomy application to

create custom image mosaics of the sky on demand

[2]. There are four major tasks involved in building a

mosaic using Montage [15].

At first the input images are reprojected to a

common spatial scale and coordinate system. Then

the background radiation in images is modeled to

achieve common flux scale and background level by

minimizing the inter-image differences. The images

are then rectified to a common flux scale and

background level. Lastly the reprojected and back-

ground corrected images are coadded to yield the

final mosaic.

Figure 3 shows the structure of a small Montage

workflow. The vertices in the workflow are the

various tasks such as image reprojection, background

modeling, coaddition etc. The edges represent the

data dependency between the tasks. We assign a

level to each task in the workflow indicated by the

number inside the vertices in Figure 3. This level

assignment will help us in workflow restructuring

based optimizations as will be described in Section 5.

The top-level tasks in the workflow (those that do not

have any predecessors) are assigned level 1. All the

tasks that become ready for execution when the tasks

at level 1 complete are assigned level 2 and so on.

All the tasks at level k have a predecessor at level

k-1. An important property to note is that the tasks

at the same level are independent of each other.

Also, all the tasks at the same level in the Montage

workflow are similar, i.e., the same program invoked

with different input data. Due to this the runtimes of

the tasks at the same level do not differ much. This

allows us to characterize the workflow by describing

the number of tasks at each level of the workflow

and their average runtimes.

4. Experiments

The experiments performed can be classified into

two categories. The first set of experiments (de-

scribed in this section) is done by modifying the

behavior of the execution engine. This modification

is done by changing the configuration parameters of

the engine that affect the execution cost such as the

scheduling interval (resource matching), dispatch
rate (task submission) and submission rate (updat-

ing the ready queue). No changes are done to the

workflow structure. The second set of experiments

(described in next section) restructure the workflow

in addition to distributing the workflow submission

functionality i.e. using multiple submit hosts instead

of only one. All the experiments examine the effect
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of the changes on the makespan of the workflow. The

Montage workflow used in the experiments creates a

five square degree mosaic of the sky centered at

M16. The workflow contains 4,469 jobs. Table 2

gives the average runtime and the number of tasks at

each level of the workflow.

The Condor pool used for the experiments

contains one submit host (used for submitting the

workflow), one central manager (resource manager

for the pool) and 100 worker nodes as shown in

Figure 4. In order to eliminate variability that may

result from shared use, this pool was only populated

with worker nodes drafted in temporarily using glide-

in [14]. For the duration that these worker nodes

were part of the pool, they were available exclusively

for executing the tasks in the workflow.

To ensure homogeneity, these nodes were all

allocated from the NCSA TeraGrid cluster [16]. The

cluster nodes were a combination of 1.3 and 1.5 GHz

Intel Itanium 2 processors with 2 GB memory per

node.

As mentioned before, we do not include the wait

time associated with getting the resource allocated in

the execution overhead. In order to achieve this, in

all the experiments, the workflow is submitted to

DAGMan for execution when the worker nodes are

present in the Condor pool. The makespan is the time

difference between when the workflow is submitted

for execution to DAGMan and when the last task in

the workflow completes execution. In the rest of this

paper, we will use makespan and completion time

interchangeably to refer to this time difference. Since

Montage is a data intensive application, an important

issue is the data transfer between the tasks in the

workflow. When the tasks in the workflow are

mapped to different resources, then the data will

have to be transferred between resources if the parent

and child tasks are mapped to different resources.

This transfer time will get included in the makespan

and will not allow us to measure the execution

overhead precisely. In order to avoid such transfers,

the entire workflow is mapped to the same resource

(NCSA TeraGrid cluster). The data transfer between

the tasks is done using a shared file system accessible

from all the nodes in the cluster and the runtimes of

the tasks include the time to read and write the data

to the file system. The input data for the workflow is

prestaged to the cluster before the workflow is

submitted for execution.

4.1. Resource Provisioning

In our experiments we used Condor glide-in [14] to

provision the execution resources ahead of time.

Resource provisioning implies that even though the

resources are usually shared and belong to different

administrative domains, they are dedicated for our

use for certain timeframe.

If the resources are not provisioned ahead of time,

the workflow execution engine may have to interact

with multiple resource management systems to

identify suitable resources and the submitted tasks

may have to wait in the job queue of the identified

resources before they can begin execution. The use

of glide-in eliminates this possibility and allows for

experiments to isolate and examine the overheads

introduced by the workflow execution engine.

4.2. Baseline Condor Performance

First we evaluate the performance obtained using

Condor_s default configuration. Figure 5 shows the

execution timeline of the workflow.

The X-axis denotes the time (in minutes) since the

workflow was submitted to DAGMan for execution.

The Y-axis denotes the tasks in the workflow. For

Table 2. Runtime and number of tasks at various levels of the

Montage workflow.

Level Number of tasks Runtime (in seconds)

1 892 8.2

2 2,633 2

3 1 68

4 1 56

5 892 1

6 25 6

7 25 40

Condor Pool 

Central 
Manager 

Worker Nodes from 
NCSA TeraGrid cluster

Submit Host 

Collector  

Negotiator 

DAGMan  

Scheduler

Startd 

Figure 4. Execution environment.
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each task, a horizontal line represents its overall

runtime. The gray portion in this line denotes the

time the task spent waiting in the job queue on the

submit host and the black portion denotes the time

when it was executing on the worker node. With the

default behavior of the execution engine, the tasks

spent most of their time waiting in the queue even

with 100 nodes in the pool and the workflow takes

303 min to complete.

In the following sections, we study how we can

improve the overall runtime by modifying the

behavior of the workflow execution system.

4.3. Scheduling Interval

The process of identifying resources for the submit-

ted jobs is called a negotiation cycle. During a

negotiation cycle, the scheduler on the submit host

tries to find available machines for all the jobs in its

queue by consulting the negotiator on the central

manager. The interval between two successive

negotiation cycles is the scheduling interval. The

scheduling interval in Condor can be controlled in a

variety of ways. The first option is to have a fixed

scheduling interval. The second option is to start a

negotiation cycle upon submission of each job at a

rate no greater than once every 20 s. A negotiation

cycle can be a costly operation because the scheduler

attempts to find machines for each and every job in

its queue even when all the worker nodes are

currently busy. With thousands of jobs in the queue,

a negotiation cycle can last for 2 to 3 min with most

of the time spent in a fruitless search for worker

nodes.

4.3.1. Scheduling at Fixed Intervals

Figure 6 shows the workflow execution graphs when

the scheduling interval is fixed to 30 s, 5 and 10 min
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Figure 5. Workflow execution graph with default Condor

parameters.

Figure 6. Workflow execution with fixed scheduling intervals; 30 s (left), 5 min (center), 10 min (right).
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A short scheduling interval can help in matching jobs

with available machines expeditiously. However,

since the scheduler must both match resources and

dispatch jobs, time spent in resource matching can

decrease the job dispatch rate. A longer scheduling

interval allows the scheduler to dispatch jobs to

matched resources uninterrupted for longer intervals.

However, the submitted jobs may have to spend

more time in the queue waiting to be matched with

the resources.

Due to these reasons, as Figure 6 shows, a

scheduling interval of 5 min (completion time 105

min) works better than a scheduling interval of 30 s

(completion time 201 min) or 10 min (completion

time 118 min).

4.3.2. Scheduling at Each Job Submission

Here, each job submission starts a new negotiation

cycle (but not within 20 s of the last one). In

addition, in the absence of any job submission

events, the scheduling occurs at the predefined fixed

interval. Figure 7 shows the workflow execution

graph when the predefined interval is fixed at 30 s, 5

and 10 min resulting in a workflow completion time

of 218, 146 and 145 min, respectively. In this

scheduling strategy, scheduling happens every 20 s

for most of the workflow lifetime. Such short

scheduling interval leads to an increase in the

workflow makespan.

Figure 8 gives a comparison of the workflow

completion times with various scheduling intervals

and scheduling policies. As the figure shows,

scheduling at fixed intervals work better than

scheduling at each job submission for all values of

the scheduling interval. In the latter case, since

scheduling happens very frequently (every 20 s)

when jobs are being submitted to the queue, the

dispatch rate of the scheduler suffers. Hence, the

workflow completion time increases. In addition, in

this case longer fixed intervals are better since there

is no need for a negotiation cycle when jobs are not

being submitted. In the limiting case, when the

scheduling happens based only on the job submission

events (no predefined fixed interval), the workflow

takes 140 min to complete. While the above analysis

would seem to imply that short scheduling intervals

are necessarily bad, this is not always the case. For

example when there are only few jobs in the queue or

if the scheduler can terminate the negotiation cycle

on detecting the first resource allocation failure, then

short scheduling intervals are preferable. Both of

these conditions lead to short negotiation cycles.

Thus the optimum value of the scheduling interval

for minimizing the workflow makespan is related to

the duration of the negotiation cycle.

The observations above have to be qualified by

the fact that once the scheduler has matched a

number of jobs with machines during a negotiation

cycle, it uses those claimed machines for executing

Figure 7. Scheduling at each job submission and at 30 s (left), 5 min (center), 10 min (right) intervals.
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other eligible jobs in its queue until the negotiator

forces it to vacate those machines (due to user

priorities) or it runs out of jobs. Thus ideally no

negotiation cycle is required once there are enough

number of tasks in the queue and all the machines in

the pool are claimed by the scheduler on the submit

host. However, it is not possible to implement this

ideal policy with the basic configuration options.

4.4. Dispatch Rate

The dispatch rate is the rate at which the scheduler can

start the jobs on the remote resources (worker nodes).

In Condor, the task of starting a job on a remote

resource involves creating a shadow process that is

responsible for creating the environment and manag-

ing the job on the remote resource. The dispatch rate

can be throttled by specifying the JOB_START_

DELAY. The scheduler must wait for this duration

of time before creating the next shadow process. The

recommended delay is 2 s (used in Section 4.2). This

artificial throttling reduces the load on the scheduler

and on the submit host as it prevents them from

having to manage the startup activity all at once.

Figure 9 shows the workflow execution graph when

this delay is set to 0, 1, and 2 s. The scheduling was

done at each job submission and at 5 min intervals

(the default behavior). When the dispatch delay is

reduced to zero, the number of waiting jobs in the

Figure 9. JOB_START_DELAY set to 0 s (left), 1 s (center) and 2 s (right).

90

130

170

210

0.5 1 2 3 4 5 7 10

scheduling interval (minutes)

w
o

rk
fl

o
w

 c
o

m
p

le
ti

o
n

 t
im

e
 (

m
in

u
te

s
)

fixed interval scheduling
scheduling at job submission
scheduling at job submission and fixed interval

Figure 8. Workflow completion times with various values of the scheduling interval and scheduling policies.

209



queue is drastically reduced, and hence a short

scheduling interval works well in this case.

Using the recommended delay of 2 s, the work-

flow completes in 303 min. The dispatch rate of the

scheduler increases when the delay is reduced to 1

and 0 s and the workflow completes in 146 and 87

min, respectively. Because there is a large number of

short running jobs in the workflow, even a small

dispatch delay incurred for each of them add up to a

significant delay for the whole workflow.

The optimal scheduling interval for the workflow

also depends on the dispatch rate since the dispatch

rate affects the number of jobs in the scheduler

queue. The JOB_START_DELAY was 1 s in Section

4.3 resulting in a dispatch rate of one job per second.

A fixed scheduling interval of 3 min gives the

minimum completion time for this dispatch rate.

However, if JOB_START_DELAY is 0 s, then lower

value of the scheduling interval is preferable.

Figure 10 shows the workflow completion time

with a fixed scheduling interval of 30 s to 10 min and

two values of the JOB_START_DELAY. When the

JOB_START_DELAY is zero, then the minimum

workflow completion time is 80 min with a 30 s

scheduling interval. An effective strategy with a fast

dispatch rate is to do scheduling at each job

submission. In the rest of the Montage experiments

described in this paper, we use a JOB_START_DE-

LAY = 0 and scheduling at each job submission

(subject to a 20 s minimum gap between two

successive scheduling events).

4.5. Job Submission Rate

The third factor that we considered is the rate at

which DAGMan can submit jobs to the job queue on

the submit host. DAGMan has to monitor job

completion events and based on the dependencies

of the workflow it has to determine when jobs

become executable and submit them to the queue.

Figure 9 showed that when the dispatch rate is faster

than the job submission rate, the latter becomes the

limiting factor. In Figure 9 (center and right) due to

the slower dispatch rate, the jobs have to wait in the

Condor queue (indicated by the gray portion in the

graphs). In these cases, a faster submission rate

would only lead to longer wait times for jobs.

However, in Figure 9 (left), due to a faster dispatch

rate the jobs do not have to wait in the queue. Thus

there is potential for decreasing the workflow

completion time further by increasing the job

submission rate. The next section shows how the

job submission rate can be increased by exploiting

the workflow structure.

5. Restructuring the Workflow

The motivation for restructuring the workflow arises

out of Figure 9 (left), which shows the job submis-

sion rate of DAGMan. There is a change in the job

submission rate after the first 892 jobs have been

submitted. The job submission rate slows down from

2.1 job submissions per second to 0.8 job submis-

sions per second after this point. A glance at the

application workflow (Table 2) reveals that the first

892 jobs do not have any dependencies. The rest of

the jobs in the workflow have dependencies that must

be satisfied before these jobs become executable.

Thus, it is obvious that the dependency analysis

slows down the job submission rate.

We explored the restructuring of the workflow so

that the dependencies in the workflow graph can be
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reduced. We group independent jobs at the same

level (explained in Section 3.2) in the workflow into

clusters. Figure 11 shows the restructured workflow

graph with one cluster per level (left) and two

clusters per level (right).

Now the dependencies are only between the

clusters. Since there are only a handful of them, the

dependency analysis is simplified. However, it has to

be emphasized that this restructuring is only for job

submission purpose. Clustering does not imply that

all the tasks in a cluster are to executed on the same

processor as is done by the traditional clustering

algorithms [17]. It also does not imply that the tasks

in each cluster might be executed sequentially as

might be the case with hierarchical task graphs [18].

Each cluster is implemented using a wrapper

program that takes as input a list of jobs in that

cluster and submits them into the job queue. So any

job in the workflow can still execute on any available

worker node. The performance gain achievable can

vary based on the implementation of the wrapper

program. In the next section we use Condor DAG-

Man as the wrapper and in Section 5.2 we use a

custom written wrapper.

5.1. Implementing Clusters with DAGMan

In this section, DAGMan is used as the wrapper

program. Since there is no dependency between the

jobs in a cluster, DAGMan can submit them at a

faster rate. This results in a scenario where DAGMan

is used for executing the main workflow as well as

the clusters in the workflow. These are separate

unrelated instantiations of the DAGMan program.

Figure 12 shows the workflow execution graph when

using one cluster per level and using two clusters per

level.

With one cluster per level, the workflow now

completes in 46 min. The job submission rate is

constant at about 1.8 job submissions per second.

Using two clusters per level, the job submission rate

is even faster since two DAGMan processes can run

in parallel.

However, in this case the job submission rate

becomes more than the job dispatch rate resulting in

accumulation of jobs in the job queue. The scheduler

on the submit host becomes overwhelmed resulting

in an increase in the workflow completion time.

5.2. Using a Custom Wrapper Program

In this case, we have written a custom wrapper

program that submits all the jobs in the cluster into

the job queue. It monitors their progress and

terminates when all of them have completed. It

utilizes a Condor feature incidentally also called

clustering which allows multiple jobs to be specified

in the same submit file and submitted using a single

Cluster 

Jobs inside a
cluster 

Figure 11. Restructured workflow. One cluster per level (left) and two clusters per level (right).
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scheduler invocation. The only requirement is that

the jobs in the submit file should be independent and

have the same program executable. Both of these

requirements are satisfied in our application. Thus,

all the jobs in the cluster are submitted using a single

submit file.

The job submissions are very fast because this

involves only a single call to the scheduler for

submitting the whole cluster instead of one call per

job in the cluster. Another advantage of using

clustering is that the Condor scheduler can be

configured such that if it fails to find a match for

an idle job, it will not try to match any other idle jobs

in the same cluster during that negotiation cycle. This

leads to shorter and much efficient negotiation

cycles. In the following experiments, we show the

workflow performance using clustering with central-

ized (single submit host) and distributed (multiple

submit hosts) job submission.

5.2.1. Centralized Job Submission

Figure 13 shows the workflow execution graph using

this approach with one cluster per level. The jobs in a

cluster are submitted in the same time it took to

submit a single job earlier and the job submission

rate is no longer the limiting factor in the workflow

completion time. The vertical edges in the graph

show that all the jobs in each cluster were submitted

to the queue at the same instant. The whole workflow

is submitted and executed using a single submit host

and completes in 30 min (a reduction of 90% from

the baseline workflow completion time of 303 min,

Section 4.2).

The workflow completion time is no longer

limited by the job submission rate. Instead, it now

depends on the rate at which the scheduler can

dispatch the jobs for execution.
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Figure 13. Workflow execution graph with condor clustering with

centralized job submission.
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Figure 12. The workflow execution graph with one cluster per level (left) and two clusters per level (right).
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5.2.2. Distributed Job Submission

In order to increase the dispatch rate, we investigate

using multiple schedulers in parallel. Since there is

only one scheduler per submit host, we have to

increase the number of submit hosts in our Condor

pool and submit jobs in a distributed fashion. We

modify the execution environment to include multi-

ple submit hosts as shown in Figure 14.

The central manager has job submission capabil-

ity and the submit hosts have both the job submission

and execution capability. The worker machines only

have the job execution capability. The workflow is

restructured with multiple clusters at each level. The

number of clusters at each level is equal to the num-

ber of submit hosts in the pool. The main workflow is

now submitted from the central manager. The clus-

ters at each level are made to execute on one of the

submit hosts by using the requirements attribute in

Condor.

After the restructured workflow is submitted from

the central manager using DAGMan, the sequence of

events for the execution of jobs at each level are as

follows:

1. Each cluster is matched with one of the submit

hosts.

2. When the cluster (our wrapper program) starts

executing on the submit host, it submits all the

jobs in the cluster to the job queue on that host.

3. The schedulers on the submit hosts try to find

suitable nodes for the submitted jobs during the

negotiation cycle.

4. The matched jobs are dispatched to the worker

nodes for execution.

Figure 15 shows the workflow execution graph

when using one, two, and three submit hosts with the

same number of clusters per level leading to a

workflow completion time of 42, 25, and 34 min,

respectively. The decrease in workflow completion

time depends on the sharing of worker nodes

between the submit hosts. In the case of two submit

hosts, both of them get a fair share of the nodes and

so both the schedulers can work in parallel. In the

case of three submit hosts (Figure 15, right), two of

the submit hosts got all the nodes and the third had to

wait until either of the first two were done. Thus,

only two of the schedulers could work in parallel.

The added overhead of distributing the jobs increase

the workflow completion time.

Newer versions of Condor (6.7.3) provides

features for submitting jobs remotely (Condor-C)

that may make it possible to implement distributed

job submissions without using any external wrapper.

However, the overhead associated with these mech-

anisms is yet to be evaluated.

6. Tomography Application

Tomography is another application that we use for

studying the performance of the execution engine.

The Tomography application is a set of independent

tasks that are used for deriving 3D structures from a

series of 2D electron microscopic images. Tomogra-

phy allows for the reconstruction and detailed

structural analysis of complex structures such as

synapses and large structures like dendritic spines

[4]. The tasks in the Tomography application are not

only independent of each other but also are of coarser

granularity than the Montage application. The aver-

age runtime of a Tomography task is around 2 min

and there are 2,946 tasks in the workflow used for the

experiments in this section. This application allows us
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Figure 14. Distributed job submission scenario.
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to explore the performance impact of the execution

engine on the completion time of a coarse granularity

application that does not have dependencies.

6.1. Baseline Performance

The workflow takes 135 min to complete with the

baseline Condor configuration parameters.

Since the theoretical execution time of the work-

flow with 100 processors is approximately 1 h, the

total execution overhead is less in case of Tomogra-

phy than it was in case of Montage (Figure 16). For

Montage, the completion time was 5 h while the

theoretical execution time was less than 5 min.

6.2. Scheduling Interval

The Tomography application workflow has no

dependencies and all the workflow tasks are submit-

ted to the job queue on the submit host within the

Figure 15. Distributed workflow execution with one (left), two (center), and three (right) clusters per level.
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Figure 16. Baseline Tomography workflow execution graph.
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first 10 min. The rest of the time is spent in executing

the tasks on the worker nodes in the Condor pool.

Figure 17 shows the workflow completion time with

various values of the scheduling interval and sched-

uling policies.

In the case of the Tomography application,

scheduling at job submission only works the best

because scheduling is required only in the initial 10

min when jobs are being submitted to the queue.

Later no scheduling event is required. As can be seen

from Figure 17, there is not much difference between

scheduling at fixed intervals and scheduling at each

job submission in addition to fixed intervals. The

reason is that after the first 10 min when all the jobs

are submitted, both of them are essentially the same.

6.3. Dispatch Rate

In the case of the Montage workflow, the dispatch

rate had a large impact on the workflow completion

time. In the case of the Tomography application, the

dispatch rate does not have a major impact on the

completion time. The baseline Condor performance

for Tomography is obtained using a scheduling

interval of 5 min in addition to scheduling at each

job submission with a dispatch rate of one job every

2 s (JOB_START_DELAY = 2). With the same

configuration, if we reduce the dispatch delay to 1 s

and 0, the completion time is 83 and 89 min,

respectively. Thus, there is a large reduction in the

completion time by reducing the dispatch delay from
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Figure 17. Workflow completion times with various values of the scheduling interval and scheduling policies.
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Figure 18. Tomography workflow execution with Condor clustering.
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2 to 1 s but further reduction in the dispatch delay

leads to a marginal increase in the completion time.

This apparent anomaly can be explained by the fact

that with a dispatch delay of 1 s or less, the total

dispatch delay for 2,946 jobs is 50 min which is less

than the theoretical execution time of the workflow.

In such a situation, the effect of changing the

dispatch rate is marginal and other factors such as

the scheduling interval or the load on the submit host

are more predominant.

6.4. Job Submission Rate

All the jobs in the Tomography application are

independent of each other and hence DAGMan can

submit them at a faster rate.

The only way to increase the submission rate

further is to use Condor clustering as described in

Section 5.2. Figure 18 shows the workflow execution

graph for the Tomography application when all the

jobs in the workflow are put in a single cluster. The

workflow completes in 64 min which is within 10%

of the theoretical execution time.

We have also performed experiments with another

astronomy application called Galaxy Morphology [3].

Galaxy Morphology is also a fine granularity appli-

cation like Montage. Using a similar set of optimiza-

tion developed for the Montage workflow, we were

able to reduce the workflow completion time of the

Galaxy Morphology application by 75% [19].

7. Discussion

The theoretical execution time of the Montage

workflow with 100 processors is under 5 min. Thus

it is alarming that the workflow took 303 min to

complete with the default configuration. This pro-

vided the motivation for this study on understanding

the costs associated with workflow execution and the

factors affecting the workflow completion time. We

isolated and studied the effect of job submission rate,

the scheduling interval, and dispatch rate on the

workflow execution. It is difficult to do so in general

since changing one of these may have an indirect

influence on the others. For example, in the case of

the Montage workflow, the optimal scheduling

strategy and the scheduling interval depends on the

dispatch rate.

If the dispatch rate is high enough, the job

submission rate can become the limiting factor. With

the original job submission rate, the workflow could

not be completed in less than 87 min. By exploiting

the workflow structure to group independent jobs and

submitting them in a single call to the scheduler

using Condor clustering, the workflow completion

time could be reduced to 30 min. Thus it is critical to

have a high submission rate and the mechanism that

we have used for increasing the submission rate is to

restructure the workflow.

Finally, the dispatch rate was the limiting factor.

The effect of the dispatch rate on the completion

time depends on the number of available resources

and the runtime of tasks. With 100 available worker

nodes and small jobs, a single scheduler was not able

to utilize all of them. In this case, multiple schedulers

were used to increase the dispatch rate.

The effect of the scheduling interval (and its

duration) depends on the length of the job queue and

the behavior of the scheduler (negotiate all the jobs

or only a subset). Ideally the duration of the sched-

uling event should be proportional to the number of

available resources and not the number of submitted

jobs. This can be achieved in Condor using clustering

and configuring the scheduler to stop negotiating

as soon as it cannot find a match for an idle job in

the cluster. The length of the job queue depends on

the job submission rate and dispatch rate. If the job

queue is small or the number of jobs considered for

scheduling can be restricted then smaller scheduling

intervals are preferable otherwise longer intervals

tend to work well. For example, in the case of the

Montage workflow when the dispatch rate is one

job per second and the job queue has a large num-

ber of jobs, the best fixed scheduling interval is 3

min but when the dispatch delay is zero and the job

queue is small, the best fixed scheduling interval is

30 s.

Workflow restructuring allows us to increase the

job submission rate and distribute the workload

among multiple submit hosts. The restructuring only

implies a change in the job submission mechanism

for the jobs in the workflow. The level-based

partitioning used for restructuring works well for us

since all the jobs at the same level are similar (same

runtime). However, it introduces a synchronization

point between levels since any job at a lower level

cannot be submitted until all the jobs at the higher
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level clusters have finished. In spite of this, it helps

us to reduce the workflow completion time.

The use of the Tomography application demon-

strates the extent to which the performance is

affected by the factors considered in this paper when

the workflow contains no dependencies and is at a

coarser granularity. The techniques developed with

the Montage workflow are still useful and lead to a

workflow completion time that is within 10% of what

is theoretically achievable. Overall, there is a 50%

reduction in completion time from 135 to 64 min.

There are differences between the Montage and the

Tomography application in the effect of the dispatch

rate and the scheduling interval on the completion

time. The first difference is that since the Tomogra-

phy application consists of a set of independent jobs,

scheduling at each job submission works best

because as soon as all the jobs in the workflow are

submitted, no more scheduling events are required.

Secondly, when the dispatch rate is fast enough to

keep the resources in the pool busy, further reduction

in the dispatch delay does not bring significant

reduction in the workflow completion time.

It is important to note that the experiments in this

paper were done in the context of a stable execution

environment with resources provisioned ahead of

time. If the resources in the execution environment

can change dynamically, the best value for the

scheduling interval needs to be reexamined. Also

for a large scale, fine computational granularity

application such as Montage, the load of the submit

host can have a significant impact on the workflow

performance. Thus it is preferable to use a lightly

loaded machine as the submit host.

Though this study was done in the context of the

Condor system, we believe the factors affecting the

workflow performance in the case of Condor would

be present in other workflow engines too. The costs

involved in parsing dependencies and submitting

tasks, identifying resources for the ready tasks and

initiating their execution on the identified resources

are not implementation specific but can be explained

in terms of the general execution model depicted in

Figure 1. Similar costs exist in other workflow

execution engines like the Workflow Enactment

Engine (WFEE) [20] and GridAnt [21]. In case of

the former, a workflow coordinator (WCO) is

responsible for monitoring the status of the tasks

and activating the child tasks when they become

eligible. An event service server (ESS) is used for

notification purposes. Active tasks register their

status with the ESS, which in turn notifies the

WCO. Based on the status received from the ESS,

WCO may active the child tasks (similar to DAG-

Man functionality). The activated tasks query a

resource discovery service when they become eligi-

ble for execution which is similar to scheduling at

each job submission. The WFEE supports multiple

middleware components (e.g., Gridbus broker,

Globus [22] and web services) and hence the cost

associated with initiating the task on the remote

resource depends on the middleware used. Authors in

[20] note that a gap exists between the parent task

end time and the child task start time due to the

execution engine running overhead, communication

delay, event notification process, resource identifica-

tion delay and event processing. This is just a

different categorization (in the context of the WFEE)

of the generic costs that we have investigated in this

paper. GridAnt [21] uses a commodity tool called

Ant as the workflow execution engine. The cost of

dependency management depends on the implemen-

tation of this tool. There is no cost associated with

identifying resources as the description of each task

in the workflow contains identification information

for the execution resource. There is a cost associated

with dispatching the task on the execution resource

as the GridAnt system uses Globus [22] as the

dispatch mechanism. This involves contacting the

remote GRAM service [13] and submitting the task

description to it.

8. Related Work

There are many projects on workflow management

and execution on the Grid [20, 21, 23Y25]. They differ

in the amount of support for workflow composition,

dynamic resource scheduling and fault tolerance. The

design and implementation of a workflow execution

engine (WFEE) is described in [20]. GridAnt [21] is

based on an extension of the Java ANT project build

tool. The performance of the workflow manager is

not discussed in any of the above papers.

The efficiency of resource brokering is consid-

ered in [26]. The jobs in this study are independent

whereas in our case they belong to a workflow. In

addition, the focus is on resource brokering whereas
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we also consider the issues related to job submission

and dispatching to remote resources. Policies for

improving the response time of small jobs in the

Condor system is considered in [27]. In our case,

improving the response time of a single job in the

workflow at the expense of others is not helpful since

we are interested in reducing the completion time of

the whole workflow.

There is a wealth of literature on clustering

algorithms for directed acyclic graphs. A survey can

be found in [17]. However, these clusters are actually

resource allocation decisions that map tasks in the

same cluster to the same processor. In our case each

cluster is just a mechanism to reduce the job

submission and the scheduling overhead for the tasks

in the cluster. The tasks in the cluster are not

constrained to execute on the same execution

machine. On a similar note, a compiler can partition

a program into a hierarchy of parallel tasks by

generating hierarchical task graphs (HTG) [18]. The

decision whether to expand a task into parallel

subtasks or to run it sequentially is made at runtime

based on the load conditions. Thus it is used to

dynamically adjust the granularity of the program at

runtime. The difference between the hierarchical task

representation and the workflow restructuring that we

have done is that we do not change the execution

granularity of the workflow. The workflow executes

at its full parallelism. While our clusters are similar

to the composite nodes in the HTG, they are never

constrained to run sequentially.

The nature of the execution environment also

affects the optimal values of the configuration

parameters. The effect of the scheduling interval on

the makespan of parameter sweep applications with

different quality of information has been studied in

[28]. A short scheduling interval was found to work

well in their case since it allowed the scheduling

algorithms to adapt to the dynamic environment.

Since we have used a stable execution environment

with resource provisioning, we found short schedul-

ing intervals to be undesirable particularly with a

large number of idle jobs in the queue. Rescheduling

under uncertainty has also been studied in operation-

al research [29]. The focus is on the placement of

scheduling events. Continuous rescheduling and

periodic rescheduling as described in the paper are

similar to scheduling at each job submission and

scheduling at fixed intervals. However both in [28]

and [29] the purpose of scheduling is also to handle

uncertainty in the execution environment while in

our case the purpose of scheduling is only resource

allocation and sequencing.

9. Conclusions

Large-scale scientific workflows are complex to

compose and execute on the Grid. There are several

projects working on workflow composition and

execution on the Grid [20, 21, 23, 25, 30]. The focus

of the community has been on building easy to use

workflow composition interfaces, standardizing

workflow description languages, developing map-

ping heuristics for the tasks in the workflow and

developing workflow enactment engines. While

these are essential first steps, it is important to start

a discussion on the performance aspects of the

workflow execution engine. So far, only the perfor-

mance of the workflow tasks on the target resources is

considered for developing an optimal mapping be-

tween the tasks and the resources in order to minimize

the application makespan. However, the overheads of

executing the workflow across Grid resource can

significantly impact the actual makespan particularly

for large scale, fine granularity workflows.

We conducted our experiments using a widely

used workflow execution engine (Condor) and an

operational Grid infrastructure (TeraGrid [16]). Our

studies were performed in the context of a fine

granularity astronomy application and a coarse

granularity biology application. As we have shown,

the performance of the execution engine is critical

for determining the completion time for fine granu-

larity workflows. We were able to reduce the work-

flow completion time by 90% in case of the Montage

and 50% in the case of the Tomography application.
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