A General Approach to Real-time Workflow
Monitoring

Karan Vahi*, Ian HarveyT, Taghrid Samak?, Daniel Gunter?, Kieran Evansf, David RogersT, Ian Taylori, Monte Goodet,

Fabio Silva®, Eddie Al-Shakarchif, Gaurang Mehta*, Andrew Jonesand Ewa Deelman*
*USC Information Sciences Institute, Marina Del Rey, California
Email: vahi,gmehta,deelman@isi.edu
fSchool of Computer Science, Cardiff, UK
Email: i.c.harvey,k.evans,d.m.rogers,lan.J. Taylor,e.alshakarchi,Andrew.C.Jones @cs.cardiff.ac.uk
! Lawrence Berkeley National Laboratory, Berkeley, CA
Email: tsamak,dkgunter,mmgoode @1bl.gov
§ University Of Southern California, Los Angeles, CA
Email: fabio.silva@usc.edu

Abstract—Scientific workflow systems support different work-
flow representations, operational modes and configurations. How-
ever, independent of the system used, end users need to track the
status of their workflows in real time, be notified of execution
anomalies and failures automatically, perform troubleshooting
and automate the analysis of the workflow to help categorize
and qualify the results. In this paper, we describe how the Stam-
pede monitoring infrastructure, which was previously integrated
in the Pegasus Workflow Management System, was employed
in Triana in order to add generic real time monitoring and
troubleshooting capabilities across both systems. Stampede is an
infrastructure that attempts to address interoperable monitoring
needs by providing a three-layer model: a common data model
to describe workflow and job executions; high-performance tools
to load workflow logs conforming to the data model into a data
store, and a querying interface for extracting information from
the data store in a standard fashion. The resulting integration
demonstrates the generic nature of the Stampede monitoring
infrastructure that has the potential to provide a common
platform for monitoring across scientific workflow engines.

I. INTRODUCTION

In many scientific applications, workflows are used to
describe the relationships between individual computational
components [14]. Scientific workflows enable the formaliza-
tion of the computations, exposing individual computational
steps, and data and control dependencies between them. They
allow scientists to focus on the logical structure of the over-
all computation rather than on the low-level implementation
details. Representing the computation as a workflow makes
updating and maintaining an application easier than modifying
a complex script that represents the same computation.

Different workflow systems address different needs. For
example, workflow systems such as Triana [24] , Taverna [29]
and Kepler [5] focus on presenting a graphical user interface
for executing workflows locally or on a distributed set of
resources. Other workflow systems such as Pegasus [12], focus
more on large-scale workflows that are usually executed on a
distributed set of resources and present a command line driven
interface to users. However, for all workflow systems, users

can reasonably expect to be able get real-time status informa-
tion, troubleshoot their workflows and detect any anomalies
that may occur during execution. They are also interested in
a common set of performance metrics such as how long the
workflow ran, how many jobs it had, the breakdown of jobs
by various types, and compute resource usage.

Most workflow systems have addressed this need by build-
ing their own specific monitoring infrastructure [32] or putting
logs into a database post mortem and then performing the
analysis [9]. These approaches duplicate effort that could
be more efficiently combined to build a common analysis
infrastructure.

A system that attempts to address these concerns and
provide a common data model for filtering monitoring infor-
mation across runs is the NSF-funded Synthesized Tools for
Archiving Monitoring Performance and Enhanced DEbugging
(Stampede) [22], [37] project. In this project, the authors have
developed a framework that uses a general data model to
represent workflows and their execution. Stampede decouples
the representation of data in the workflow and job log files
from the process of populating this data to a central store. This
decoupling provides the potential to use the Stampede frame-
work for loading logs and analysis across workflow systems.

The contributions of the present paper are:

e Final Stampede Data Model - Stampede is a complete
workflow data model for representing the performance
characteristics of distributed workflows. In our initial im-
plementations, we only modeled the output (executable)
workflow. However, workflow systems may restructure
the workflow for performance improvements at runtime,
and further extensions to the STAMPEDE data model
were required to accommodate this. Hence, our final
model supports both the input and the output workflows
enabling us to answer questions in reference to both the
input tasks defined by the user in their workflows, and the
runtime information in the output executable workflow.

o Demonstrate the generic nature of the Stampede Ap-

proach - The integration of Stampede and Pegasus
has been described in our earlier work [22]. The
present paper demonstrates the generic nature of the
Stampede approach by describing the integration with the
independently developed Triana workflow engine.

o Overview of performance metrics and trouble shooting
capabilities that Stampede tools provide to the users of
workflow systems, once the integration is done.

The paper provides an overview of related work and an
introduction to the Triana Workflow System; it then describes
the Stampede data model in Section IV. The Stampede and
Triana integration is described in Section V. We conclude the
paper by describing a music retrieval workflow modeled in
Triana and demonstrate how Stampede tools facilitate moni-
toring, troubleshooting and mining of performance metrics.

II. RELATED WORK

Workflows present compact operational models of com-
plex domain processes, which can assist substantially in the
understanding and learning of these processes. A workflow
can be used to systematically break a complex problem
into a tractable set of components that support the entire
research lifecycle, which promotes a general methodology for
disseminating good research practices and their reuse across
institutions, problem domains and disciplines.

There are numerous workflow systems in use within the sci-
entific community, for example, ASKALON [16], Kepler [5],
Pegasus [12], MOTEUR [21], P-Grade [26], Taverna [29],
Triana [24] and Trident [7]. However, there has not been much
work in providing a common workflow monitoring tool within
the eScience community. Instead, the community has focussed
on achieving interoperability at the workflow representation
level, which enables users to run the same workflow using
different workflow engines or by embedding workflows as
black box processes, e.g. SHIWA [38], WF4Ever [1].

Many workflow systems have some form of integrated mon-
itoring capability. For example, Kepler, Triana, and Taverna
support run-time monitoring through a graphical user interface.
Some, like P-GRADE [26], support integrated performance
analysis and debugging. Although there is a common set of
analysis needs across these workflow systems, there is little
interoperability between the monitoring capabilities. To date,
interoperability of workflow state information has been fo-
cused on the provenance of computations, e.g.: the IETF Open
Provenance Model [30], OPM-V [31], PREMIS [33], and
SWAN [40]. Provenance, unlike performance data, is designed
to extend in space and time beyond the system where the
original computation was performed. Therefore, provenance
systems are not well-suited for representation and access to
system-specific details needed for performance analysis, such
as CPU usage, job wait times, and failure codes.

Condor’s Quill [25] provides well-defined interfaces to
operational data from the scheduling substrate. However, this
operational data is geared towards providing a global view of
the computational infrastructure (i.e a Condor Pool). It is very
difficult to correlate its statistics with the particular sequences

of activities in a given workflow, sub-workflow, job, and so
on. There is no way to directly associate jobs in a particular
workflow with the data in the Quill database. Quill can be used
to see jobs running by a particular user. However, it does not
help in identifying what higher level workflow it belongs to.
Quill serves the needs of an administrator of a computational
resource, whereas we are concerned with the user experience.

III. BACKGROUND

In this section, we describe the workflow systems integrated
with Stampede and the underlying monitoring system.

A. Pegasus and Triana

The workflow systems being integrated, Pegasus and Triana,
serve different requirements and user communities.

Pegasus is a workflow management system that bridges the
scientific domain and the execution environment by automat-
ically mapping high-level abstract workflow descriptions onto
distributed resources. It automatically locates the necessary
input data and computational resources necessary for workflow
execution without the user needing to understand the details
of the underlying execution environment or the particulars
of the low-level specifications required by the middleware
(Condor [20], [19] , Globus [18], or Amazon EC2 [15]).
Prior to the integration of Stampede in Pegasus [22], [37], the
workflow and job logs were converted to Netlogger BP format
and uploaded to a netlogger database separately after the
workflows completed for analysis [9]. The database schema
was a general schema [43] to load log messages and not
specific to workflow systems.

Triana is a workflow and data analysis environment, provid-
ing an interactive GUI to enable the composition of scientific
applications. It has been used in many Grid and stand-
alone settings. Since Triana came from the gravitational wave
physics application domain [41], the system contains a wide
ranging palette of tools (around 400) for the analysis and ma-
nipulation of one-dimensional data, which are mostly written
in Java (with some in C). Recently, other extensive toolkits
have been added for audio analysis [42], image processing,
text editing, for creating diabetic retinopathy decision-making
workflows [3], [8], for data mining based on configurable Web
Services [11], [4] and for distributed execution of multi-level
workflows in clouds (see section V).

Pegasus and Triana differ in a number of significant ways.
First, Pegasus is focused at the job level and utilizes Con-
dor [20], [19] for the submission of its jobs. Triana, on the
other hand, focuses more on services and components, where
each component is a piece of Java code, which may or may
not contain interfaces to distributed computing infrastructures.
Therefore, whilst the typical mode of use for Pegasus would
be to coordinate the running of thousands of jobs and man-
age their execution across multiple resources, Triana might
focus on a more fine-grained mapping of the algorithms by
decomposing them into sub-components or sub-workflows. In
fact, the typical Triana model of distributed execution is quite
recursive because it often involves a Triana pipeline of Java

components forming a job and being managed within a Triana
meta-workflow to coordinate their distributed execution across
the resources.

Another significant difference is that Pegasus executes
workflows based on a Directed Acyclic Graph (DAG), i.e.,
a graph that cannot contain loops. Triana workflows, on the
other hand, are free to contain loops and, for example, to be
driven by the previous analysis of data. The two workflow
systems also have different terminologies to describe the enti-
ties in their systems. Due to the nature of the representations,
components or jobs being dealt with in the two systems,
it follows that the monitoring information is very different
between the two systems. The common data model exposed
by Stampede [22], [37] allows both Pegasus and Triana entities
to be mapped to this model. This provides the opportunity to
interface with the two systems using the common terminology.

B. NetLogger

The monitoring framework underlying Stampede, called the
NetLogger Toolkit [43], provides an integrated set of tools
to collect, archive, and analyze time-series data. The format
and structure of the data from NetLogger are defined in the
Logging Best Practices (BP) document [2]. All monitoring
data processed and archived by Stampede is first converted to
BP log messages, giving the architecture flexibility to process
the data in streams or load it into an alternative database.

IV. STAMPEDE

The goal of Stampede [22], [37] is to enable real-time
debugging and analysis of workflow performance. This is
challenging because scientific workflows can involve many
sub-workflows and millions of individual tasks [27]. Resource
problems such as node and network failures, or application
bugs, or both, can cause slowdowns and delays that are hard
to detect and harder to debug. Users need automated analyses
that can alert them to problems before resources and time are
wasted, and then they need tools that can help them isolate the
cause of the problems. These analyses in turn require access to
a “live” repository with detailed events and recent history of
the workflow and associated resource statistics. The repository
must provide flexible mechanisms to navigate and sub select
data sets that are too large to fit into memory.

Thus, Stampede must provide this repository based on
information contained in thousands of log files [10], and
then make the infrastructure truly useful by building new
and advanced analyses on top of it. The types of views and
analyses of the data that are enabled by Stampede include:

o Global views of the workflow synthesized from status and

failure information from multiple components.

e Real-time updates of monitoring data, even for work-
flows with hundreds of thousands of tasks and high task
throughput.

e Real-time queries of both detailed and summarized status.

e Real-time troubleshooting across all layers of the software
and resource stack.

o Performance prediction of runtime and other resources,
which are useful e.g. for provisioning on grids and clouds.

e Anomaly detection to distinguish actual failures from
normal variation, which are particularly useful for large
complex workflows like CyberShake [13].

A high level schematic of how Stampede interacts with
Workflow Systems is shown in Figure 1. To achieve this,
Stampede provides a three layer model for integration with
different workflow systems.

1) Common data model. Stampede has a well defined
data model to describe workflows and their executions.
Workflow systems refer to this Data Model, to develop
a workflow system-specific log normalizer that converts
the workflow logs to Netlogger-formatted logs that are
compatible with the model.

2) High-performance loader. The normalized logs are
loaded into a data store using nl_load from the Netlogger
Toolkit. nl_load has a stampede_loader module, that
allows us to load large workflow logs in realtime into a
relational archive.

3) Query Interface. There is a standard query interface
for extracting the data from the relational archive. The
Stampede troubleshooting, analysis and dashboard tools
use this interface. Some of these tools are described in
Section VIIL.

A. Data model

A lasting contribution of Stampede, upon which the analysis
tools and other infrastructure depends, is a general data model
for the performance characteristics of distributed workflows.
Each workflow system has its own terminology for the data
and processing components. In addition, some systems such
as Pegasus distinguish between the abstract specification and
its concrete mapping onto the target resources. Stampede
defines a precise terminology to differentiate between the
various components. The relationship between these terms is
illustrated in Figure 2, and each is described below.

o Workflow: Container for an entire computation. Execution
of a workflow is called a run.

e Abstract workflow graph (AW): Input graph of tasks and
dependencies, independent of a given run on specific
resources. We assume AW to be a directed acyclic graph.

o Executable workflow (EW): Result of mapping an AW to
a specific set of resources. The cardinality of the AW task
to EW job mapping is many-to-many.

o Sub-workflow: A workflow that is contained in another
workflow.

o Task: Representation of a computation in the AW.

e Job: Node in the EW. A node in the EW can be associated
with one or more tasks in the AW. It may also represent
jobs added by the workflow system to manage the work-
flow that were not present in the AW, for example jobs
added to stage-in data for the workflow.

e Job instance: Job scheduled or running by the workflow
engine (e.g. DAGMan and Condor Schedd). Due to

1) Common Data Model

_——— = — — Appllcatlon
| Workflow I 0
Log Normalizer
|W0rklfow System ,—» rﬁirﬁ raw 1 09 Normaliz X
e wiie cloud,grid, or 098 :l. \D
. cluster - Normalized &
\\ NetLogger logs |2
\
’ AMQP Log bus
Aferts and _—- Q 9 bu .
summaries =~ A
\
Legend ampede \
: Stampede Components Relational |
— — Workflow System Archive :
| Components 2) High Performance Log Loader |
I
\ !
1
i
Query recent and Query Y
historical data Interface \ L
Dashboard Troubleshooting Analysis

Fig. 1.

retries, there may be multiple job instances per job.

o Invocation: When a job instance finishes, one or more
invocations may be associated with that job instance. An
invocation captures the actual invocation of an executable
on a remote node. There can be multiple invocations if
the corresponding job instance is associated with multiple
tasks specified in the AW. A job present in the EW but
not in AW also always has an invocation associated when
the corresponding Job Instance terminates.

In relation to the computations (tasks) specified by the user
in an AW, invocations are the instantiation of tasks, whereas
jobs and job instances are an intermediate abstraction for use
by the workflow planning and scheduling sub-systems.

B. Log Messages and Validation

In order for different workflow systems to utilize the
same underlying monitoring infrastructure, it is important to

Abstract 1 Executable Symbols

| Depends-on
Workflow H Workflow

| Contains

!

Sub-workflows j

4

C Sub-workflows ﬁ R
1

Invocations '

Job

3) Query Interface and Analysis Tools

Stampede data collection architecture.

formalize the format of the logs. In Stampede, we use the
Netlogger [23] framework to format the log messages. The
NetLogger events that make up the log messages are modeled
using the YANG [45] schema language. YANG is a data mod-
eling language originally developed to model configuration
state data manipulated by the Network Configuration Protocol
(NETCONF). This schema, available from [35], ensures that
the events in the log messages conform to the Stampede
data model described earlier. It captures required and optional
attributes that need to be associated with different netlogger
event messages. Modeling the log events in YANG allows us to
use existing YANG validation tools like pyang [34] to validate
log messages against the data model. These normalized logs
can then be populated to Stampede data store using the loading
infrastructure we have developed.

An example NetLogger log event for Stampede, showing
the start of a workflow, is shown below:
ts=2012-03-13T12:35:38.000000Z event=stampede.xwf.start

level=Info xwf.id=eal7e8ac-02ac-4909-b5e3-16e367392556
restart_count=0

Below is a snippet from the YANG schema that describes
the stampede.xwf.start event and lists the attributes required.
It also describes whether an attribute is mandatory or not.

container stampede.xwf.start {
uses base-event;
leaf restart_count {
type uint32;
mandatory "true";
description "Number of times workflow was
restarted (due to failures)";

The above description refers to a base event that identifies
all the common attributes an event message conforming to
schema should have. Below is a snippet describing the base
event from the schema:

grouping base-event {
description "Common components in all events";
leaf ts {
type nl_ts;
mandatory "true";
description
"Timestamp, IS08601 or seconds since 1/1/1970";

}

leaf xwf.id {
type uuid;
description
}

} // grouping base-event

"Executable workflow id";

Having a formal, machine-processable, description for the
log messages helps developers of workflow systems to write
out the log messages conformant with the Stampede system.

C. Message bus

The NetLogger log events are placed on a message bus,
which avoids blocking the producers and also easily ac-
commodates many consumers for the same event. For this
function, we chose to use RabbitMQ [36], a popular im-
plementation of the standard Advanced Message Queueing
Protocol (AMQP) [6]. AMQP defines an efficient and flexible
publish/subscribe interface that is independent of the data
model.

We use the hierarchical datatype of the NetLogger log
message, called the event field, to route messages through an
AMQP ropic queue. Topic queues allow clients to subscribe
to messages matching a prefix of the message type, e.g., to
receive all “stampede.job” messages or just the subset starting
with “stampede.job.mainjob”. This capability provides a great
deal of flexibility in gluing together analysis components,
while maintaining good performance and keeping implemen-
tations simple.

D. Relational archive

Currently, Stampede stores data collected from the workflow
logs into an SQL database. To load into the database, we
have developed a component called the stampede_loader. The
loader can be accessed programmatically using its Python
API, or workflow systems can write messages to the mes-
sage bus and the stampede_loader can asynchronously in-
sert them into a database. The stampede loader leverages
the SQLAIchemy [39] object-relational mapping layer. This
allows seamless support for a number of relational database
products, including SQLite, MySQL and PostgreSQL.

The relational schema for workflow performance data
is shown in Figure 3. Each workflow is an entry in
the workflow table. Each workflow is associated with
an Abstract Workflow (AW) described by the task and
task_edge tables and an Executable Workflow (EW) de-
scribed by the job and job_edge tables. Capturing the
edges present in the AW and EW allows the tools to re-
construct the dependency graph of the jobs in the workflow.

A job in the EW is associated with a job_instance that is
recorded in the job_instance table. Each execution of a
job_instance results in one or more invocation records
that are recorded in the invocation table. The invocation record
also links back to a task in the AW. Workflow state changes are
recorded as rows in the workflowstate table. Like work-
flows, jobs are associated with any number of time-stamped
and named states (SUBMIT, EXECUTE, JOB_SUCCESS, etc),
which are stored in the jobstate table.

! g file
: [wi id — file_id jobstate host
| [parent_abs_task_id task_id job_instance_id host_id
; [child_abs_task_id Ifn state wi_id
: estimated_size timestamp site
md_checksum jobstate_submit_seq hostname
type ip
task uname
task_id as Job _ 'gb,instanf:e total_memory
job_id Tob id job_instance_id +
wi_id wi_id /ade_
abs_task_id exec_job id host id__
transformation submit_file job_submit_seq
argv type_desc H sched_id
type_desc (dax/ clustered site t
dag/job) max_retries a’s;[(T
T Z;(;\f utable cluster_start
task_count cluster_duration
= local_duration
+ F subwf_id
stdout_file
stdout_text
stderr_file
1 £ stderr_text
T T job_edge stdin_file
workflow wf_id multiplier_factor
wt_id ﬁ parent_exec_job_id exitcode
wi_uuid child_exec_job_id Y T
dag_file_name
timestam schema_info
submit_hostname H version_number
submit_dir version_timestamp
planner_arguments "
user
grid_dn _ _ X
planner_version invocation
dax_label ,_|invocation_id
dax_version " job_instance_id
dax_file [task_submit seq |
parent_wf_id start_time
root_wf_id remote_duration
remote_cpu_time
exitcode
transformation
w.orkflow,state executable
wf_id argv
state abs_task_id (derivation) L type !
timestamp wf id ‘pin !
restart_count
status

Fig. 3. Relational schema for Stampede Data Model.

E. Loader

The program that loads normalized log messages into the
Stampede database, labeled stampede_loader in Figure 1,
is nl1_load a standard component of the NetLogger Toolkit
(described in Section III-B). This program processes a stream
of NetLogger BP log messages and inserts them into the
Stampede database using the stampede_loader module
that we developed for Stampede . The architecture is modular
such that the loader can be invoked as a script from the
command-line, or the Python modules can be imported and
used as an API from within a Python program.

The loader can read its input from a file or an AMQP
message queue, and it is able to save the data into a number
of target databases and file formats. The architecture is,
again, modular in that the loader can use an arbitrary Python

module for the target database. For example, to load logs
from an AMQP message bus into the Stampede database, the
stampede_loader module would be used:

nl_load --amgp-host=12.13.14.15 -A user=joe

—A queue=stampede stampede_loader
connString=mysqgl://16.17.18.19/mydb

On the first line of this invocation, the options describe
how to connect to an AMQP message bus and retrieve events.
The second line specifies the loader module and provides con-
nection information for a MySQL database. Other databases
supported by SQLAlchemy, such as PostgreSQL and SQLite,
could also be used.

The loader has been shown to scale well for large work-
flows [37], for example the Cybershake workflows [28] that
have O(10°) tasks.

F. Analysis and Dashboard

Stampede tools enable users to troubleshoot workflows
and extract meaningful performance statistics. Stampede also
facilitates job and workflow level analysis, as described in
our previous work [37] .Workflow-level analysis aims to
predict workflow failures from basic aggregations on high-
level statistics. Job-level analysis focuses on low-level detailed
inspection of jobs to predict and isolate problem causes.

Users should not need to wait for a workflow to finish to see
its status. To enable this, we have designed a very lightweight
performance dashboard that enables easy monitoring and on-
line exploration of workflows based on an embedded web
server written entirely in Python. The performance dashboard
is not described in this paper due to space constraints and will
be described in a future publication.

V. USE OF STAMPEDE IN TRIANA

In this section, we describe how Triana has been extended to
use the Stampede Monitoring infrastructure. Unlike Pegasus,
Triana is focused primarily around data flows or workflows
of Java components and is therefore not focused directly on
the execution of jobs and their dependencies, which require
different semantics in the modeling. Each Java component can
embed a job or interface with another system (e.g. Pegasus)
to submit job-based workflows but it does not do this itself.
At this level, therefore, Triana is not directly involved with
mapping logical jobs and files across to distributed computing
environments, such as Condor. Because of this, one of the
key differences for the Triana Stampede integration is that
there is no planning stage defined within the execution of a
Triana workflow. Each task within a task graph is run locally
(though that task may perform actions which include access or
execution on remote locations). This means that there is a one-
to-one mapping between a Stampede task and a Stampede job
entity, unlike in Pegasus where multiple tasks may be clustered
into a larger executable job during the planning stage.

This is illustrated in Figure 4, which shows the interaction of
the various Triana components during a workflow execution.
A task graph contains tasks, which may be another task graph
(i.e. a sub-workflow, which can contain a sub-workflow, and so

Stampede Data Model Entities

Abstract Executable

D Workflow
Task | as
| Sub Wordous
i O Task [_] Job

E Job Instances
] Invocations

Runnable 7/ Invocation of Unit
i)

1
C Sub Workflows § :C Sub Workflows
1

A ' i
G
1
|
/
/

- . _
. < Runnable < Invocation of Unit
\ Unit Instance 74 Process

Symbols

Depends-on‘> Contains

Fig. 4. Entities in Triana Workflow.

on). Each workflow consists of a collection of tasks (abstract
Java class), which are implemented as a component within the
Triana Java “Unit” class, and each unit class has a process()
method that contains the code to be run within that unit.

Figure 5 illustrates the Triana framework that generates
Stampede data. Runnable Instances control the running of a
task unit while the Scheduler controls the start/ stop/ reset/
events of a task graph lifecycle. The Scheduler also holds a
StampedeLog object which listens for Triana Execution Events
and converts them to Stampede Events. A Stampede event
contains key value pairs which match the events in the
Stampede schema. The StampedeLog also creates the events
required for the schema compliance, but are not directly related
to Triana events, such as mapping of tasks to units. These
Stampede Events are then converted to the NetLogger format
through the Rabbit Appender and recorded to either a file for
later evaluation, or are posted directly to an AMQP queue for
runtime processing using the Stampede tools.

Unit

- |
_~~ Runnable
: Instances

OTRIANA

Scheduler RabbitAppender

Stampede

Stampedelog Events

| AMQP

Advanced Message Queuing Protocol

Fig. 5. Stampede logging in Triana.

A. Triana Execution Modes and the Stampede System

A major difference between Pegasus and Triana is the way
in which Triana workflows are executed. Triana can be run
in one of two modes: it can be run single step where each

component is scheduled to be executed once (like a DAG); or
they can be run continuously, where a component continuously
waits for data, until it is released through a local condition
and stopped. In continuous mode, therefore, the logic of what
runs and when a workflow finishes, is completely dependent
on the data, its analysis and the condition that releases the
components. For example, data can be analyzed until a certain
threshold value is reached, within an iterative algorithm. Aside
from conditional workflow exits, a workflow execution can be
stopped interactively by the user within the GUI by pressing
the stop button. This sends a message to the local task graph
to pause the execution of each component in the workflow.

In Triana’s continuous mode, all tasks are run almost
simultaneously as separate Java threads. Each thread waits for
all the input data to arrive before starting to process the data.
To support this mode of operation, the Stampede job instance
entity is used to model the Runnable Instance; that is, when the
task is first set to a running state, the invocation entity is used
to capture the processing of the task after all the inputs have
been satisfied. This approach provides support for both Triana
modes. However, for the use case described in this paper,
Triana is run in Single Step mode, which is more compatible
with a Pegasus run, allowing us to more easily compare a
user’s experience of using Stampede in both systems. In the
future, we plan to devise a workflow experiment that executes
a data driven workflow employing the continuous mode of
operation of Triana.

B. Mapping with the Stampede Data Model

The events natively recognised within Triana by the work-
flow and tasks listener interfaces are: NOT_INITIALIZED,
NOT_EXECUTABLE, SCHEDULED, RUNNING, PAUSED,
COMPLETE, RESETTING, RESET, ERROR, SUSPENDED,
UNKNOWN, and LOCK.

The states are reached via a transitioning Execution Event,
which follows a broad ‘“execution requested”, “‘execution
starting”, “execution finished” and “execution reset” lifecycle.
A task can reach each state for a variety of reasons, for
example “execution finished” can occur with a complete, error,
suspended or unknown state. An Execution Event manages
state and can store the new state, as well as the previous state,
giving some context as to the flow of the workflow.

As an example, converting the RUNNING state in Triana
to a Stampede event, we would need to take into account
whether the previous state was PAUSED or SCHEDULED,
which would result in a stampede.job_inst.held.end or stam-
pede.job_inst.main.start event, respectively. For other events,
the mapping is more straightforward, such as PAUSED in Tri-
ana mapping directly to a stampede.job_inst.held.start event.

A large number of the Stampede events are populated in the
logs at the beginning of a workflow’s execution. Immediately
before the scheduler sets the task graph’s state to “RUN-
NING”, the logging object records the workflow planning
events, including the Task, Edge, and Job descriptions defined
by Stampede. These simply describe the tasks and the connec-
tions (edges) between the tasks in the workflow. Further, when

Triana receives a parent UUID from the incoming workflow
bundle object, it is recognised that this is a sub-workflow being
prepared, and the UUIDs of the parent and child are logged.

Once the task graph enters a “RUNNING” state, each task is
“WOKEN?”, their Job Submit Start event is recorded and they
wait for input data. Once data is received, the Task enters the
“RUNNING” state and begins to process the data, triggering
an Invocation Start event. The data is then processed, which
results in the Invocation Terminate and Invocation End events
being recorded. If a unit’s process method throws an error
instead of returning appropriately, the Terminate and End
events have return codes of “-1”.

When Triana tasks are set to Run Continuously mode, the
process method of a Task’s Unit is able to run more than
once. This allows a streaming function, where chunks of data
from previous tasks can be processed in succession, utilizing
a queuing function at both the input and output cables of the
task. At each unit’s execution time step, Invocation Start is
recorded, allowing a job to have multiple invocations during
each execution of the workflow. The Invocation End event is
fired each time the process method completes.

The execution of a single workflow on a local machine
results in the logging information produced by Triana being
collected locally in a log file. If the workflow is re-run, this is
considered to be a new workflow, rather than a re-execution of
a previous one. The Host Information is also logged, including
the localhost hostname.

C. Log Collection

Triana utilizes standard java logging mechanisms like
LOG4J to do the logging. In order to incorporate Stam-
pede logging to an AMQP queue, we integrated a Stam-
pede RabbitMQ appender, and to record the Stampede events
consistent with the YANG [35] schema, we created a mapping
of Triana events to the corresponding events in the YANG
schema.

The RabbitMQ appender, written for Triana, is discovered
using the standard LOG4J system, and allows logging details
to be sent as they are produced. In this way the events are
received on the AMQP queue in real time, and can be listened
for via any connected consumers. The nl_load tool can then
be set up to listen for logging events on an AMQP channel,
and direct them all to a database file, as follows:
nl_load -a s-vmc.cs.cf.ac.uk -p 7000

—A user=username —-A pw=password —-A queue=Stampede

—A durable=true -A auto_delete=false
stampede_loader connString=sqglite:///test.db -v

D. Distributed Execution of Triana - Meta Workflows

Triana has the ability to modify its workflow at runtime.
This can mean anything from the changing of input parameters
and premature removal of tasks, to the addition of new tasks
within the workflow. This latter ability is used in the creation
of a sub-workflow, which in this sense refers to the creation
and execution of a workflow during the run of a parent
workflow. The sub-workflow can further be responsible for

the creation of a series of other sub-workflows at runtime,
and the execution may follow immediately.

This function is used in the distributed execution of Triana
for running a workflow and spawning sub-workflows on mul-
tiple nodes within a cloud environment. Specifically, a meta-
workflow processes multiple tasks and dynamically produces
a number of smaller sub-workflows ready for distribution.
It is possible at this stage to design a sub-workflow to use
input parameters to concretize specific executions, allowing
for more accurate spreading of load across available resources.
For example, partial analysis could be conducted on input
data to prepare it before the more processor-intensive tasks are
farmed out to remote execution environments. Each of these
sub-workflows can then be sent to a remote cloud node and
executed within a Triana environment running on each node.
In this way, input variables or command line arguments can
be defined in advance of distribution, which is desirable in the
case where they cannot be generated easily by the workflow
itself.

Each of these workflows running on a distributed node can
be seen as a sub-workflow of the initial meta-workflow running
on the user’s desktop machine. In case of Meta Workflows
in Triana, the sub-workflow tasks in the root workflow are
generated by the root workflow at runtime before the submis-
sion of the sub-workflow. However, the way the stampede-
loader is implemented it requires all the events related to
the mapping between the tasks in the abstract workflow, and
the jobs in the executable workflow to be generated before
execution can proceed. This meant that for the experiment
described in this paper, we had the number of sub-workflows
in the meta workflow pre-defined. It is important to note that
this is not a deficiency of the Stampede data model. Instead it
is a limitation of the stampede-loader, which will be addressed
in future work. This behavior was implemented to improve the
performance of Pegasus workflows logging by batching similar
inserts together.

VI. SCIENTIFIC EXPERIMENT

In order to demonstrate that the analysis and debugging
infrastructure developed as part of Stampede can be applied to
Triana, we chose to model DART workflows [42] in Triana.
The DART workflow uses the DART Music Information
Retrieval (MIR) research platform to perform a parameter
sweep experiment in order to discover the optimal parameter
settings for the Sub-Harmonic Summation (SHS) pitch detec-
tion algorithm.

The DART application was originally designed and created
in Triana, using the graphical workflow-design environment as
a development test bed for the distributed algorithms. The al-
gorithm was converted into a standalone JAR (multi-platform)
executable and is distributed (along with any required input
data) to workers at runtime. DART parameters can be modified
from the DART Command Line Interface and a parameter
sweep experiment can be carried out by creating a script to
generate the required execution parameters, which can be run
sequentially.

The parent workflow designed for Triana uses a single file
as its input. This file was created using a separate Python
script, and defines a list of 306 strings, separated by the
newline character. These strings are executable via a terminal’s
command line, and as such are able to run anywhere where
the DART jar and the audio input files present in the execution
directory.

The function of the Triana workflow is to split the input
file into individual lines, and edit a pre-defined aggregate file
(using SHIWA bundles [38]). A Triana task creates a series
of new workflows using a subset of the input lines, with
each workflow containing approximately 16 executing tasks.
This set of workflow files is added to an existing bundle file,
resulting in as many executable bundles as there were sub-
workflows created. A final task in the workflow sends each
of these bundles to the TrianaCloud Broker via an HTTP
POST. The Broker is then responsible for each sub-workflow’s
execution.

The DART workflow was run on the TrianaCloud infras-
tructure and used 8 cloud nodes, each running Ubuntu 12.04,
with 2GB RAM, 20GB disk space, 1 core per instance.

Split BundleEditor
Textmgke$ aeatechainWorﬁ aunMukipleBundles

b =N T |
- == i = = = =s ——=
i e e e

Fig. 6. DART Workflow - Triana

A. Triana workflow within the GUI

Figure 6 shows the workflows that execute in Triana. The
parent workflow (top) is designed to run on the user’s local
machine, typically a desktop, within the Triana GUI. This
workflow creates the child workflows (bottom) at runtime,
and executes them as sub-workflows on the distributed Triana-
Cloud environment. These sub-workflows have 16 executable
tasks, which run 4 at a time on the compute node. After all
the executable tasks have all completed, a Zipper task collates
all the outputs produced in the results folder.

VII. ANALYSIS OF RESULTS

In this section, we show how Triana users can use the
Stampede tools to debug their workflows and extract mean-
ingful statistics and troubleshooting information from their
workflow runs. We give an overview of the statistics that
Stampede provides and then present sample statistics from a
Triana workflow run.

Users often execute workflows on a variety of cyberinfras-
tructures like nationally distributed computational grids (e.g.
XSEDE [44]) and increasingly on commercial and scientific
clouds [15] [17]. To execute on such resources, users put
in allocation requests or provision resources beforehand. One
way for a user to determine the amount of resources required

is to do a baseline run and use that to extrapolate accordingly.
In order to do this, a user needs detailed metrics about their
workflow runs.

Both Pegasus and Triana provide for distributed execution
of jobs in a particular workflow. In a distributed environment,
there are multiple points where delays can be introduced for
a job. For example, a job can experience delays in a remote
queue of a cluster. It is useful for the users to be able to
determine the various delays a job encounters. For example,
if a user notices that there are long scheduling delays, they
may choose to restructure their workflows so that each job
does a larger unit of work.

Stampede provides a tool called stampede_statistics that
can provide such statistics for a particular workflow. The tool
provides statistics both at workflow level and at job level.
Below is a summary of some statistics provided by Stampede .

Workflow Level Statistics

o Workflow wall time: The wall time from the start until
the end of the workflow execution, as reported by the
workflow engine.

o Workflow cumulative job wall time: Sum of actual run
times for all the jobs in the workflow. This helps in
estimating the resources a workflow requires in a perfect
system without delays.

e Breakdown of jobs by count: Breakdown of count by job
type. For each job types, lists the total number of jobs,
the number succeeded and number failed.

e Breakdown of jobs by runtime: This captures the total,
minimum, maximum and mean runtimes for each differ-
ent job type in the workflow.

e Breakdown of tasks and jobs over time on hosts: A single
workflow can be executed over a number of hosts. This
captures the number of jobs and total runtime of these
jobs executed by each host over time.

Job Level Statistics

For each job, stampede_statistics also displays statistics like
« the name of the job

« runtime of the job (as measured by the workflow engine)
« remote delay encountered

o actual CPU time used (if captured)

o the host on which the job ran.

A. Triana Execution Statistics

A run of 306 executions of the DART experiment was
performed on the TrianaCloud environment. These 306 tasks
were split into sub-workflows for distribution on the available
nodes within the cloud. This required the construction of a
root workflow to run on the user’s machine, which contained
one submission task for each sub-workflow. For ease of use,
this root-workflow was generated by a meta-workflow, which
allows modification of the number of tasks running in each
sub-workflow. Choosing to have 16 tasks per sub-workflow
generated 20 workflow bundles for execution within the pool.
Progress of these workflow bundles can be seen in Figure 7,

with wall-clock time on the X axis and the cumulative run-
time of each bundle on the Y axis.

2000 -

1500 -

1000 -

Cumulative runtime per workflow (sec)
8
S

500 600

300 400
Total wallclock time (sec)

Fig. 7. Progress to completion of DART workflow “bundles” of 16 tasks
per sub-workflow.

Each of the sub-workflows has additional tasks to prepare
outputs, while the root workflow has tasks for monitoring the
running of the sub-workflows. In total, there were 367 tasks.
The Stampede logs were collected via the AMPQ queue and
nl_load was used to load these events into a database during
runtime. The log events were also retained in their original
(plain-text NetLogger Best Practices) format. The loaded data
was then analyzed by the stampede-statistics tool, to retrieve
the metrics and provide a human-readable output, shown in
Table I.

Type Succeeded | Failed | Incomplete | Total gzg' Total
Tasks 367 0 0 367 0 367
Jobs 367 0 0 367 0 367
Sub WF | 20 0 0 20 0 20

orkflow wall time : 1T mins, [sec, (661 seconds).
Workflow cumulative job wall time : 11 hrs, 10 mins, (40224 seconds).

TABLE 1
SUMMARY OUTPUT FROM STAMPEDE-STATISTICS FOR DART WORKFLOW

The stampede-statistics tool also produces a number of out-
put files, which further detail the execution time of individual
jobs. Below are some examples of the available information.

Table II shows a section of breakdown.txt, defining the
times of each task in the workflow. This section shows a
sub-workflow of 4 jobs executing the DART experiment. The
Stampede tools can also generate aggregated statistics for a
meta workflow that include all the sub-workflows.

Type Count | Success | Failed | Min | Max | Mean | Total
115-119 1 1 0 1.0 1.0 1.0 1.0
Output_ 0 | 1 1 0 1.0 1.0 1.0 1.0
execO 1 1 0 74.0 | 740 | 74.0 74.0
execl 1 1 0 75.0 | 75.0 | 75.0 75.0
exec2 1 1 0 74.0 | 740 | 74.0 74.0
exec3 1 1 0 75.0 | 75.0 | 75.0 75.0
execd 1 1 0 36.0 | 36.0 | 36.0 36.0
zipper 1 1 0 1.0 1.0 1.0 1.0
TABLE 11

BREAKDOWN.TXT DESCRIBING THE TASKS IN A SUB-WORKFLOW

Tables III and IV show the entry for a sub-workflow in
Jjobs.txt, showing the location where the job ran and the times

as seen from different perspectives. The invocation duration
captures the duration of the task on the remote host. The queue
time is the time spent by the job in the remote queue before
it started executing.

Job Try | Site Invocation Duration
unit:304-305 1 trianaworker6 | 1.0
execl 1 trianaworker6 | 64.0
file.Output_0 1 trianaworker6 1.0
file.zipper 1 trianaworker6 | 1.0
processing.execO | 1 trianaworker6 | 51.0
TABLE III

SECTION OF JOBS.TXT FOR A SINGLE SUB WORKFLOW

Queue

Job A Runtime | Exit | Host
Time
unit:304-305 0.06 1.0 0 None
execl 0.04 64.0 0 trianaworker6
file.Output_0 0.0 1.0 0 trianaworker6
file.zipper 0.0 1.0 0 trianaworker6
processing.execO | 0.07 51.0 0 trianaworker6
TABLE IV

SECTION OF JOBS.TXT FOR A SINGLE SUB WORKFLOW

B. Troubleshooting

Stampede allows users to debug their workflows using a
tool called stampede_analyzer, employing the Stampede query
interface. It is a command-line utility that connects to the
Stampede Data Store and queries it for a given workflow. Its
output contains a brief summary section, showing how many
jobs have succeeded and how many have failed. For each failed
job, stampede_analyzer will print information showing its last
known state, along with the location of its job description,
output, and error files. It will also display any application
stdout and stderr that was captured by the workflow system
and stored in the Data Store.

In the Stampede Data Model, a workflow can consist
of tasks that refer to other sub-workflows modeled. Large
workflows can be modeled in Pegasus and Triana conceptually
as layered hierarchal workflows. The stampede_analyzer is an
interactive debugging tool, that allows a user to debug each
level of the hierarchy. It first identifies for users the failures
at the top level workflow and then allows them to drill down
the hierarchy to debug the individual failed workflows. The
output is not included because of space constraints.

VIII. CONCLUSION AND FUTURE WORK

Stampede is a distributed monitoring infrastructure for
scientific workflows that employs a three-layer model for
integration with different workflow systems. It was initially
incorporated into the Pegasus Workflow Management System.
In this paper, we have described how the Stampede data
model and infrastructure was applied to the Triana Workflow
System. The two workflow systems have different specification
languages, execution engines and use cases. We gave a detailed
overview of the Stampede approach and described the system-
specific steps involved in integrating the Stampede data model
into Triana.

In order to demonstrate the usefulness of integrating Triana
and Stampede, we modeled and deployed a music information
retrieval workflow experiment in Triana. The workflow was
executed on a cloud deployment in Cardiff University and
workflow logs were loaded in realtime into the Stampede data
store. We then provided a walkthrough of how the standard
stampede tools can help Triana users to troubleshoot and mine
performance metrics for their workflows.

In our earlier work, we have investigated the performance of
the Stampede data model for loading large workflows that are
executed through PegasusWMS [37]. Since both the workflow
systems use the same Stampede component (the n/_load) to
load the logs, we do not expect any performance penalty when
running large workflows through Triana. In future, we plan to
test this hypothesis further by doing detailed experiments that
involve running workflows of varying sizes through Triana and
evaluation of the loading performance.

Stampede also provides analysis components that give
insight into the workflow execution to enable performance
prediction and fault diagnosis. The results of this analysis have
been applied to Pegasus workflow runs in our previous work
[22]. In future, we plan to do similar analysis on larger corpus
of workflow runs.

ACKNOWLEDGMENT

The Stampede work was supported by National Science
Foundation grant OCI-0943705 and the Mathematical, Infor-
mation, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under contract DE-
AC02-05CH11231.

For Triana, we would like to thank our sponsors, PPARC
(GridOneD and Geo 600) for the development of Triana, UK
STFC TRIACS project ST/F002033/1 for the Triacs work,
Wellcome Trust for the Sintero work and the EU for the
Gridlab project to help the development of the distributed
computing capabilities and SHIWA for the development of
the SHIWA bundles that provide the cloud-based distributed
mechanisms, described in the Triana sections of this paper. We
would also like to thank Andrew Harrison for his insight and
for helping recreate Triana in its present form.

REFERENCES

[1] The EU Wf4Ever Project. http://www.wf4dever-project.org/.

[2] Grid logging: Best practices guide, 2008.

[3] David R. Owens 4. Adina Riposan, Ian J. Taylor, Omer Rana and
Edward C. Conley. TRIACS Workflows Platform For Distributed
Decision Support Processes. In In CBMS 2009, Albuquerque, 2009.

[4] A.S. Ali, O.F. Rana, and I.J. Taylor. Web Services Composition for
Distributed Data Mining. In ICPP 2005 Workshops, International
Conference Workshops on Parallel Processing, pages 11-18. IEEE, New
York, 2005.

[5] 1. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludischer, and S. Mock.
Kepler: An Extensible System for Design and Execution of Scientific
Workflows. In 16th International Conference on Scientific and Statisti-
cal Database Management (SSDBM), pages 423-424. IEEE Computer
Society, New York, 2004.

[6] Advanced message queuing protocol. Web: http://www.amgp.org.

[7]

[8]

[9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Roger Barga, Jared Jackson, Nelson Araujo, Dean Guo, Nitin Gautam,
and Yogesh Simmhan. The trident scientific workflow workbench.
In Proceedings of the 2008 Fourth IEEE International Conference on
eScience, pages 317-318, Washington, DC, USA, 2008. IEEE Computer
Society.

Taylor I. Benson T, Conley EC, Harrison AB. Sintero Server Simpli-
fying interoperability for distributed collaborative health care. In IHIC
2011 Conference, Orlando, May, 2011.

Scott Callaghan, Ewa Deelman, Dan Gunter, Gideon Juve, Philip Maech-
ling, Christopher X. Brooks, Karan Vahi, Kevin Milner, Robert Graves,
Edward Field, David Okaya, and Thomas Jordan. Scaling up workflow-
based applications. J. Comput. Syst. Sci., 76(6):428-446, 2010.

Scott Callaghan, Philip Maechling, Patrick Small, Kevin Milner, Gideon
Juve, Thomas Jordan, Ewa Deelman, Gaurang Mehta, Karan Vahi,
Dan Gunter, Keith Beattie, and Christopher X. Brooks. Metrics for
heterogeneous scientific workflows: A case study of an earthquake
science application. IJHPCA, 25(3):274-285, 2011.

Data Mining Tools and Services for Grid Computing Environments
(DataMiningGrid). http://www.datamininggrid.org/.

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D.S. Katz. Pegasus: a Framework for Mapping Complex Scientific
Workflows onto Distributed Systems. Scientific Programming Journal,
13(3):219-237, 2005.

Ewa Deelman, Scott Callaghan, Edward Field, Hunter Francoeur, Robert
Graves, Nitin Gupta, Vipin Gupta, Thomas H. Jordan, Carl Kesselman,
Philip Maechling, John Mehringer, Gaurang Mehta, David Okaya, Karan
Vahi, and Li Zhao. Managing large-scale workflow execution from
resource provisioning to provenance tracking: The cybershake example.
In Proceedings of the Second IEEE International Conference on e-
Science and Grid Computing, E-SCIENCE ’06, Washington, DC, USA,
2006. IEEE Computer Society.

Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor.
Workflows and e-science: An overview of workflow system features
and capabilities. Future Gener. Comput. Syst., 25:528-540, May 2009.
Amazon Elastic Cloud. Web:http://aws.amazon.com/ec2.

T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin,
M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek. ASKALON:
A Grid Application Development and Computing Environment. In
6th International Workshop on Grid Computing, pages 122—131. IEEE
Computer Society Press, New York, 2005.

FutureGrid. Web:https://portal.futuregrid.org/.

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastruc-
ture Toolkit. International Journal of Supercomputing Applications,
11(2):115-128, 1997.

J. Frey. Condor DAGMan: Handling inter-job dependencies, 2002.
James Frey, Todd Tannenbaum, Miron Livny, Ian Foster, and Steven
Tuecke. Condor-G: A Computation Management Agent for Multi-
Institutional Grids. In Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing (HPCD-'01).
IEEE Computer Society, New York, 2001.

Tristan Glatard, Johan Montagnat, Diane Lingrand, and Xavier Pennec.
Flexible and efficient workflow deployment of data-intensive applica-
tions on grids with moteur. IJJHPCA, 22(3):347-360, 2008.

Dan Gunter, Ewa Deelman, Taghrid Samak, Christopher X. Brooks,
Monte Goode, Gideon Juve, Gaurang Mehta, Priscilla Moraes, Fabio
Silva, D. Martin Swany, and Karan Vahi. Online workflow management
and performance analysis with stampede. In CNSM, pages 1-10. IEEE,
2011.

Dan Gunter and Brian Tierney. Netlogger: A toolkit for distributed
system performance tuning and debugging. In Integrated Network
Management, IFIP/IEEE Eighth International Symposium on Integrated
Network Management (IM 2003), volume 246 of IFIP Conference
Proceedings, pages 97-100. Kluwer, 2003.

Andrew Harrison, Ian Taylor, Ian Wang, and Matthew Shields. WS-
RF Workflow in Triana. [International Journal of High Performance
Computing Applications, 22(3):268-283, August 2008.

J. Huang, A. Kini, E. Paulson, C. Reilly, E. Robinson, S. Shankar,
L. Shrinivas, D. DeWitt, and J. Naughton. An overview of Quill: A
passive operational data logging system for Condor. Computer Sciences
Technical Report, University of Wisconsin, 2007.

Peter Kacsuk. P-grade portal family for grid infrastructures. Concurr:
Comput. : Pract. Exper., 23:235-245, March 2011.

[27]

(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]
[37]

(38]

(39]
[40]

[41]

[42]

[43]

[44]

[45]

Daniel S. Katz, Joseph C. Jacob, G. Bruce Berriman, John Good,
Anastasia C. Laity, Ewa Deelman, Carl Kesselman, Gurmeet Singh,
Mei-Hui Su, and Thomas A. Prince. A comparison of two methods for
building astronomical image mosaics on a grid. In ICPP Workshops,
pages 85-94. IEEE Computer Society, 2005.

P. Maechling, E. Deelman, L. Zhao, R. Graves, G. Mehta, N. Gupta,
J. Mehringer, C. Kesselman, S. Callaghan, D. Okaya, H. Francoeur,
V. Gupta, Y. Cui, K. Vahi, T. Jordan, and E. Field. Scec cybershake
workflows — automating probabilistic seismic hazard analysis calcula-
tions. In Ian Taylor, Ewa Deelman, Dennis Gannon, and Matthew Shield,
editors, Worflows for e-Sciences. Springer, 2006.

Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger,
Mark Greenwood, Tim Carver, Kevin Glover, Matthew R. Pocock,
Anil Wipat, and Peter Li. Taverna: A Tool for the Composition and
Enactment of Bioinformatics Workflows. Bioinformatics, 20(17):3045—
3054, November 2004.

The Open Provenance Model (OPM). http://openprovenance.org/.

The Open Provenance Model Vocabulary Specification (OPM-V). http:
/lopen-biomed.sourceforge.net/opmv/ns.html.

Simon Ostermann, Kassian Plankensteiner, Radu Prodan, Thomas
Fahringer, and Alexandru Iosup. Workflow monitoring and analysis tool
for askalon. In Ramin Yahyapour, Domenico Talia, and Norbert Meyer,
editors, CoreGRID Workshop on Grid Middleware, pages 1-14, 2008.

PREservation Metadata Implementation Strategies (PREMIS). http://
www.loc.gov/standards/premis/v2/premis-2-0.pdf.

PYANG - An extensible YANG validator and
converter in python. Web:http://www.yang-
central.org/twiki/pub/Main/YangTools/pyang.1.html.

Yang Schema for Stampede Log Messages.

Web:http://acs.Ibl.gov/projects/stampede/4.0/stampede-schema.html.
RabbitMQ. Web: http://www.rabbitmq.com.

Taghrid Samak, Dan Gunter, Monte Goode, Ewa Deelman, Gideon Juve,
Gaurang Mehta, Fabio Silva, and Karan Vahi. Online fault and anomaly
detection for large-scale scientific workflows. In Parimala Thulasiraman,
Laurence Tianruo Yang, Qiwen Pan, Xingang Liu, Yaw-Chung Chen,
Yo-Ping Huang, Lin huang Chang, Che-Lun Hung, Che-Rung Lee,
Justin Y. Shi, and Ying Zhang, editors, HPCC, pages 373-381. IEEE,
2011.

The SHaring Interoperable Workflows for large-scale scientific simula-
tions on Available DCIs Project . http://www.shiwa-workflow.eu/.
SQLAIchemy. Web: http://www.sqlalchemy.org.
Semantic Web Applications in Neuromedicine (SWAN).
mindinformatics.org/spec/1.2/pav.html.

Ian Taylor. Triana Generations. In Scientific Workflows and Business
workflow standards in e-Science in conjunction with Second IEEE Inter-
national Conference on e-Science, Amsterdam, Netherlands, December
2-4 2006.

Ian Taylor, Eddie Al-Shakarchi, and Stephen David Beck. Distributed
Audio Retrieval using Triana (DART). In International Computer Music
Conference (ICMC) 2006, November 6-11, at Tulane University, USA.,
pages 716-722, 2006.

B. Tierney and D. Gunter. NetLogger: A toolkit for distributed system
performance, tuning and debugging. In Proceedings of the IFIP/IEEE
Eighth International Symposium on Integrated Network Management
(IM 2003), Vol. 246 of IFIP Conference Proceedings, pages 97-100.
Kluwer, 2003.

Extreme science and engineering discovery environment. https://www.
xsede.org/.

YANG - A Data Modeling Language for the Network Configuration
Protocol. Web:http://tools.ietf.org/html/rfc6020.

http://swan.

